BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16530332)

  • 1. Glutamine synthetase degradation is controlled by oxidative proteolysis in the marine cyanobacterium Prochlorococcus marinus strain PCC 9511.
    Gómez-Baena G; Manuel García-Fernández J; López-Lozano A; Toribio F; Diez J
    Biochim Biophys Acta; 2006 Jun; 1760(6):930-40. PubMed ID: 16530332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.
    Gómez-Baena G; Domínguez-Martín MA; Donaldson RP; García-Fernández JM; Diez J
    PLoS One; 2015; 10(8):e0135322. PubMed ID: 26270653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo regulation of glutamine synthetase activity in the marine chlorophyll b-containing cyanobacterium Prochlorococcus sp. strain PCC 9511 (oxyphotobacteria).
    El Alaoui S; Diez J; Humanes L; Toribio F; Partensky F; García-Fernández JM
    Appl Environ Microbiol; 2001 May; 67(5):2202-7. PubMed ID: 11319101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of glutamine synthetase by metal-catalyzed oxidative modification in the marine oxyphotobacterium Prochlorococcus.
    Gómez-Baena G; Diez J; García-Fernández JM; El Alaoui S; Humanes L
    Biochim Biophys Acta; 2001 Dec; 1568(3):237-44. PubMed ID: 11786230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.
    Domínguez-Martín MA; López-Lozano A; Diez J; Gómez-Baena G; Rangel-Zúñiga OA; García-Fernández JM
    PLoS One; 2014; 9(7):e103380. PubMed ID: 25061751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation.
    El Alaoui S; Diez J; Toribio F; Gómez-Baena G; Dufresne A; García-Fernández JM
    Environ Microbiol; 2003 May; 5(5):412-23. PubMed ID: 12713467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein oxidation and proteolysis during aging and oxidative stress.
    Starke-Reed PE; Oliver CN
    Arch Biochem Biophys; 1989 Dec; 275(2):559-67. PubMed ID: 2574564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.
    Levine RL; Oliver CN; Fulks RM; Stadtman ER
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2120-4. PubMed ID: 6113590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration.
    Görg B; Qvartskhava N; Voss P; Grune T; Häussinger D; Schliess F
    FEBS Lett; 2007 Jan; 581(1):84-90. PubMed ID: 17174954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation.
    Campolo N; Mastrogiovanni M; Mariotti M; Issoglio FM; Estrin D; Hägglund P; Grune T; Davies MJ; Bartesaghi S; Radi R
    J Biol Chem; 2023 Mar; 299(3):102941. PubMed ID: 36702251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative inactivation of glutamine synthetase from the cyanobacterium Anabaena variabilis.
    Martin G; Haehnel W; Böger P
    J Bacteriol; 1997 Feb; 179(3):730-4. PubMed ID: 9006027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803.
    Silman NJ; Carr NG; Mann NH
    J Bacteriol; 1995 Jun; 177(12):3527-33. PubMed ID: 7768863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of glutamine metabolism in Chlorella pyrenoidosa. Mechanisms of regulating the activity of glutamine synthetase during ammonia assimilation].
    Akimova NI; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1976; 41(7):1306-12. PubMed ID: 11843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases.
    Rivett AJ
    J Biol Chem; 1985 Jan; 260(1):300-5. PubMed ID: 2856920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies.
    Ortega JL; Roche D; Sengupta-Gopalan C
    Plant Physiol; 1999 Apr; 119(4):1483-96. PubMed ID: 10198108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of metal-catalyzed oxidation systems by a yeast protector protein in the presence of thiol.
    Kwon SJ; Park JW; Kim K
    Biochem Mol Biol Int; 1994 Mar; 32(3):419-27. PubMed ID: 7913363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative modification of glutamine synthetase by amyloid beta peptide.
    Aksenov MY; Aksenova MV; Carney JM; Butterfield DA
    Free Radic Res; 1997 Sep; 27(3):267-81. PubMed ID: 9350431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates.
    Nguyen TV; Li J; Lu CJ; Mamrosh JL; Lu G; Cathers BE; Deshaies RJ
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3565-3571. PubMed ID: 28320958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.