These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications. Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863 [TBL] [Abstract][Full Text] [Related]
8. Fluorinated imidazoles as proton carriers for water-free fuel cell membranes. Deng WQ; Molinero V; Goddard WA J Am Chem Soc; 2004 Dec; 126(48):15644-5. PubMed ID: 15571377 [TBL] [Abstract][Full Text] [Related]
9. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications. Horan JL; Genupur A; Ren H; Sikora BJ; Kuo MC; Meng F; Dec SF; Haugen GM; Yandrasits MA; Hamrock SJ; Frey MH; Herring AM ChemSusChem; 2009; 2(3):226-9. PubMed ID: 19170068 [TBL] [Abstract][Full Text] [Related]
10. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane. Hara N; Ohashi H; Ito T; Yamaguchi T J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602 [TBL] [Abstract][Full Text] [Related]
11. A study on electric conductivity of phosphoric acid supported on nano-pore rice husk silica in H2/Pt/H3PO4 / RHS/Pt/O2 fuel cells. Hwang MJ; Lee SY; Han CS J Nanosci Nanotechnol; 2006 Nov; 6(11):3491-3. PubMed ID: 17252796 [TBL] [Abstract][Full Text] [Related]
12. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Miyatake K; Chikashige Y; Higuchi E; Watanabe M J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469 [TBL] [Abstract][Full Text] [Related]
13. High-performance solid Acid fuel cells through humidity stabilization. Boysen DA; Uda T; Chisholm CR; Haile SM Science; 2004 Jan; 303(5654):68-70. PubMed ID: 14631049 [TBL] [Abstract][Full Text] [Related]
16. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
17. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Choi MJ; Chae KJ; Ajayi FF; Kim KY; Yu HW; Kim CW; Kim IS Bioresour Technol; 2011 Jan; 102(1):298-303. PubMed ID: 20659795 [TBL] [Abstract][Full Text] [Related]
18. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers. Kim YS; Pivovar BS Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576 [TBL] [Abstract][Full Text] [Related]
19. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153 [TBL] [Abstract][Full Text] [Related]
20. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis. Randolph KL; Dean AM Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]