These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1653060)

  • 1. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains.
    Brasileiro AC; Leplé JC; Muzzin J; Ounnoughi D; Michel MF; Jouanin L
    Plant Mol Biol; 1991 Sep; 17(3):441-52. PubMed ID: 1653060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.
    Yevtushenko DP; Misra S
    Plant Cell Rep; 2010 Mar; 29(3):211-21. PubMed ID: 20087597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.
    Wang H; Wang C; Liu H; Tang R; Zhang H
    Plant Cell Rep; 2011 Nov; 30(11):2037-44. PubMed ID: 21717184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium-mediated DNA transfer in sugar pine.
    Loopstra CA; Stomp AM; Sederoff RR
    Plant Mol Biol; 1990 Jul; 15(1):1-9. PubMed ID: 1966486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr.
    Jia Z; Sun Y; Yuan L; Tian Q; Luo K
    Biotechnol Lett; 2010 Sep; 32(9):1325-32. PubMed ID: 20464449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct regeneration of transformed shoots in Brassica napus from hypocotyl infections with Agrobacterium rhizogenes.
    Damgaard O; Rasmussen O
    Plant Mol Biol; 1991 Jul; 17(1):1-8. PubMed ID: 1651126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281.
    Hood EE; Clapham DH; Ekberg I; Johannson T
    Plant Mol Biol; 1990 Feb; 14(2):111-7. PubMed ID: 2101685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny.
    Barton KA; Binns AN; Matzke AJ; Chilton MD
    Cell; 1983 Apr; 32(4):1033-43. PubMed ID: 6301678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones.
    De Block M
    Plant Physiol; 1990 Jul; 93(3):1110-6. PubMed ID: 16667565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walnut (Juglans).
    Leslie CA; Uratsu SL; McGranahan G; Dandekar AM
    Methods Mol Biol; 2006; 344():297-307. PubMed ID: 17033072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants.
    Deblaere R; Bytebier B; De Greve H; Deboeck F; Schell J; Van Montagu M; Leemans J
    Nucleic Acids Res; 1985 Jul; 13(13):4777-88. PubMed ID: 4022773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector.
    Gartland JS; McHugh AT; Brasier CM; Irvine RJ; Fenning TM; Gartland KM
    Tree Physiol; 2000 Jul; 20(13):901-7. PubMed ID: 11303580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.).
    Jiang L; Maoka T; Komori S; Fukamachi H; Kato H; Ogawa K
    Shi Yan Sheng Wu Xue Bao; 2004 Jun; 37(3):189-98. PubMed ID: 15323420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified Method for
    Pavlichenko VV; Protopopova MV
    Methods Protoc; 2024 Jan; 7(1):. PubMed ID: 38392686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walnut (Juglans).
    Leslie CA; Walawage SL; Uratsu SL; McGranahan G; Dandekar AM
    Methods Mol Biol; 2015; 1224():229-41. PubMed ID: 25416262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium-mediated transformation of Ruta graveolens L.
    Lièvre K; Tran TL; Doerper S; Hehn A; Lacoste P; Thomasset B; Bourgaud F; Gontier E
    Methods Mol Biol; 2009; 547():235-48. PubMed ID: 19521849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cauliflower mosaic virus promoter directs expression of kanamycin resistance in morphogenic transformed plant cells.
    Koziel MG; Adams TL; Hazlet MA; Damm D; Miller J; Dahlbeck D; Jayne S; Staskawicz BJ
    J Mol Appl Genet; 1984; 2(6):549-62. PubMed ID: 6099400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum l., and California poppy, Eschscholzia californica cham., root cultures.
    Park SU; Facchini PJ
    J Exp Bot; 2000 Jun; 51(347):1005-16. PubMed ID: 10948228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency.
    Sangwan RS; Bourgeois Y; Sangwan-Norreel BS
    Mol Gen Genet; 1991 Dec; 230(3):475-85. PubMed ID: 1662767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.