BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16530794)

  • 1. Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2.
    Deacon RM; Brook RC; Meyer D; Haeckel O; Ashcroft FM; Miki T; Seino S; Liss B
    Physiol Behav; 2006 Apr; 87(4):723-33. PubMed ID: 16530794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral glucose transporters expression and spatial learning in the K-ATP Kir6.2(-/-) knockout mice.
    Choeiri C; Staines WA; Miki T; Seino S; Renaud JM; Teutenberg K; Messier C
    Behav Brain Res; 2006 Sep; 172(2):233-9. PubMed ID: 16797737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kir6.2-deficient mice are susceptible to stimulated ANP secretion: K(ATP) channel acts as a negative feedback mechanism?
    Saegusa N; Sato T; Saito T; Tamagawa M; Komuro I; Nakaya H
    Cardiovasc Res; 2005 Jul; 67(1):60-8. PubMed ID: 15949470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels.
    Sun HS; Feng ZP; Miki T; Seino S; French RJ
    J Neurophysiol; 2006 Apr; 95(4):2590-601. PubMed ID: 16354731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice.
    Seino S; Miki T
    J Physiol; 2004 Jan; 554(Pt 2):295-300. PubMed ID: 12826653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences.
    Flechtner I; de Lonlay P; Polak M
    Diabetes Metab; 2006 Dec; 32(6):569-80. PubMed ID: 17296510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.
    Miki T; Minami K; Zhang L; Morita M; Gonoi T; Shiuchi T; Minokoshi Y; Renaud JM; Seino S
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1178-84. PubMed ID: 12388128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular prion protein regulates the motor behaviour performance and anxiety-induced responses in genetically modified mice.
    Lobão-Soares B; Walz R; Carlotti CG; Sakamoto AC; Calvo F; Terzian AL; da Silva JA; Wichert-Ana L; Coimbra NC; Bianchin MM
    Behav Brain Res; 2007 Oct; 183(1):87-94. PubMed ID: 17618696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K+ transport and energetics in Kir6.2(-/-) mouse hearts assessed by 87Rb and 31P magnetic resonance and optical spectroscopy.
    Jilkina O; Kuzio B; Rendell J; Xiang B; Kupriyanov VV
    J Mol Cell Cardiol; 2006 Nov; 41(5):893-901. PubMed ID: 16962131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release.
    Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J
    J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of behavioral test batteries, II: effect of test interval.
    Paylor R; Spencer CM; Yuva-Paylor LA; Pieke-Dahl S
    Physiol Behav; 2006 Jan; 87(1):95-102. PubMed ID: 16197969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies.
    Meziane H; Ouagazzal AM; Aubert L; Wietrzych M; Krezel W
    Genes Brain Behav; 2007 Mar; 6(2):192-200. PubMed ID: 16827921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KATP channel-deficient pancreatic beta-cells are streptozotocin resistant because of lower GLUT2 activity.
    Xu J; Zhang L; Chou A; Allaby T; Bélanger G; Radziuk J; Jasmin BJ; Miki T; Seino S; Renaud JM
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E326-35. PubMed ID: 18042662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of hippocampal CA3 K(ATP) channels in contextual memory.
    Betourne A; Bertholet AM; Labroue E; Halley H; Sun HS; Lorsignol A; Feng ZP; French RJ; Penicaud L; Lassalle JM; Frances B
    Neuropharmacology; 2009 Mar; 56(3):615-25. PubMed ID: 19059420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.
    Kas MJ; de Mooij-van Malsen AJ; Olivier B; Spruijt BM; van Ree JM
    Behav Neurosci; 2008 Aug; 122(4):769-76. PubMed ID: 18729629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kir6.2 knockout alters neurotransmitter release in mouse striatum: an in vivo microdialysis study.
    Shi XR; Chang J; Ding JH; Fan Y; Sun XL; Hu G
    Neurosci Lett; 2008 Jul; 439(3):230-4. PubMed ID: 18524485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.
    Shimomura K; Girard CA; Proks P; Nazim J; Lippiat JD; Cerutti F; Lorini R; Ellard S; Hattersley AT; Barbetti F; Ashcroft FM
    Diabetes; 2006 Jun; 55(6):1705-12. PubMed ID: 16731833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two types of ATP-sensitive K+ channels in rat ventricular myocytes.
    Wu SN; Wu AZ; Sung RJ
    Life Sci; 2007 Jan; 80(4):378-87. PubMed ID: 17097686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice.
    Lalonde R; Qian S
    Behav Brain Res; 2007 Mar; 178(2):293-304. PubMed ID: 17270288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.