These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. Chen K; Que L J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057 [TBL] [Abstract][Full Text] [Related]
43. Is the mu-oxo-mu-peroxodiiron intermediate of a ribonucleotide reductase biomimetic a possible oxidant of epoxidation reactions? de Visser SP Chemistry; 2008; 14(15):4533-41. PubMed ID: 18386299 [TBL] [Abstract][Full Text] [Related]
44. Biomimetic alcohol oxidations by an iron(III) porphyrin complex: relevance to cytochrome P-450 catalytic oxidation and involvement of the two-state radical rebound mechanism. Han JH; Yoo SK; Seo JS; Hong SJ; Kim SK; Kim C Dalton Trans; 2005 Jan; (2):402-6. PubMed ID: 15616733 [TBL] [Abstract][Full Text] [Related]
45. Unraveling the reactive species of a functional non-heme iron monooxygenase model using stopped-flow UV-vis spectroscopy. Rowe GT; Rybak-Akimova EV; Caradonna JP Inorg Chem; 2007 Dec; 46(25):10594-606. PubMed ID: 17988120 [TBL] [Abstract][Full Text] [Related]
46. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Shaik S; Hirao H; Kumar D Acc Chem Res; 2007 Jul; 40(7):532-42. PubMed ID: 17488054 [TBL] [Abstract][Full Text] [Related]
47. Nonheme iron(II) complexes of macrocyclic ligands in the generation of oxoiron(IV) complexes and the catalytic epoxidation of olefins. Suh Y; Seo MS; Kim KM; Kim YS; Jang HG; Tosha T; Kitagawa T; Kim J; Nam W J Inorg Biochem; 2006 Apr; 100(4):627-33. PubMed ID: 16458358 [TBL] [Abstract][Full Text] [Related]
48. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations. Comba P; Wunderlich S Chemistry; 2010 Jun; 16(24):7293-9. PubMed ID: 20458709 [TBL] [Abstract][Full Text] [Related]
49. Oxygen-atom transfer between mononuclear nonheme iron(IV)-oxo and iron(II) complexes. Sastri CV; Oh K; Lee YJ; Seo MS; Shin W; Nam W Angew Chem Int Ed Engl; 2006 Jun; 45(24):3992-5. PubMed ID: 16688689 [No Abstract] [Full Text] [Related]
50. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related]
51. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates. Ansari A; Kaushik A; Rajaraman G J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840 [TBL] [Abstract][Full Text] [Related]
52. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
53. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes. Kumar D; Sastry GN; de Visser SP J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821 [TBL] [Abstract][Full Text] [Related]
54. Ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions. Hong S; Lee YM; Cho KB; Sundaravel K; Cho J; Kim MJ; Shin W; Nam W J Am Chem Soc; 2011 Aug; 133(31):11876-9. PubMed ID: 21736350 [TBL] [Abstract][Full Text] [Related]
55. Mechanistic insight into alcohol oxidation by high-valent iron-oxo complexes of heme and nonheme ligands. Oh NY; Suh Y; Park MJ; Seo MS; Kim J; Nam W Angew Chem Int Ed Engl; 2005 Jul; 44(27):4235-9. PubMed ID: 15937890 [No Abstract] [Full Text] [Related]
56. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
57. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
58. Nonheme FeIVO complexes that can oxidize the C-H bonds of cyclohexane at room temperature. Kaizer J; Klinker EJ; Oh NY; Rohde JU; Song WJ; Stubna A; Kim J; Münck E; Nam W; Que L J Am Chem Soc; 2004 Jan; 126(2):472-3. PubMed ID: 14719937 [TBL] [Abstract][Full Text] [Related]
59. Bio-inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong C-H Bonds. Kal S; Xu S; Que L Angew Chem Int Ed Engl; 2020 May; 59(19):7332-7349. PubMed ID: 31373120 [TBL] [Abstract][Full Text] [Related]
60. A dinuclear iron complex based on parallel malonate binding sites: cooperative activation of dioxygen and biomimetic ligand oxidation. Siewert I; Limberg C; Demeshko S; Hoppe E Chemistry; 2008; 14(30):9377-88. PubMed ID: 18792042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]