BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16530962)

  • 1. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake.
    Byerly MS; Fox EA
    Neurosci Lett; 2006 Jun; 400(3):240-5. PubMed ID: 16530962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NT-4-deficient mice lack sensitivity to meal-associated preabsorptive feedback from lipids.
    Chi MM; Powley TL
    Am J Physiol Regul Integr Comp Physiol; 2007 Jun; 292(6):R2124-35. PubMed ID: 17303678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice.
    Chi MM; Fan G; Fox EA
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1044-53. PubMed ID: 15297267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
    Biddinger JE; Fox EA
    J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety.
    Fox EA; Phillips RJ; Baronowsky EA; Byerly MS; Jones S; Powley TL
    J Neurosci; 2001 Nov; 21(21):8602-15. PubMed ID: 11606648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of high-fat diet hyperphagia: experimental dissection of orosensory and postingestive effects.
    Warwick ZS; Weingarten HP
    Am J Physiol; 1995 Jul; 269(1 Pt 2):R30-7. PubMed ID: 7631900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice.
    Holder JL; Zhang L; Kublaoui BM; DiLeone RJ; Oz OK; Bair CH; Lee YH; Zinn AR
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E105-13. PubMed ID: 14982752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats.
    Bugajski AJ; Gil K; Ziomber A; Zurowski D; Zaraska W; Thor PJ
    J Physiol Pharmacol; 2007 Mar; 58 Suppl 1():5-12. PubMed ID: 17443024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia.
    la Fleur SE; van Rozen AJ; Luijendijk MC; Groeneweg F; Adan RA
    Int J Obes (Lond); 2010 Mar; 34(3):537-46. PubMed ID: 20029382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet.
    McDougle M; Quinn D; Diepenbroek C; Singh A; de la Serre C; de Lartigue G
    Acta Physiol (Oxf); 2021 Mar; 231(3):e13530. PubMed ID: 32603548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meal pattern of rats during hyperphagia induced by longterm food restriction is affected by diet composition.
    Del Prete E; Balkowski G; Scharrer E
    Appetite; 1994 Aug; 23(1):79-86. PubMed ID: 7826059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of fat and liquid sugar intake alters substrate oxidation and food efficiency in male Wistar rats.
    Oosterman JE; Foppen E; van der Spek R; Fliers E; Kalsbeek A; la Fleur SE
    Chronobiol Int; 2015 Mar; 32(2):289-98. PubMed ID: 25317718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet.
    Gil K; Bugajski A; Thor P
    J Physiol Pharmacol; 2011 Dec; 62(6):637-46. PubMed ID: 22314566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the causes of high-fat diet hyperphagia: a mechanistic and behavioral dissection.
    Warwick ZS
    Neurosci Biobehav Rev; 1996; 20(1):155-61. PubMed ID: 8622822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perinatal undernutrition-induced obesity is independent of the developmental programming of feeding.
    Orozco-Sólis R; Lopes de Souza S; Barbosa Matos RJ; Grit I; Le Bloch J; Nguyen P; Manhães de Castro R; Bolaños-Jiménez F
    Physiol Behav; 2009 Mar; 96(3):481-92. PubMed ID: 19100759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice.
    Nefti W; Chaumontet C; Fromentin G; Tomé D; Darcel N
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1681-6. PubMed ID: 19297544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis.
    Rastelli M; Van Hul M; Terrasi R; Lefort C; Régnier M; Beiroa D; Delzenne NM; Everard A; Nogueiras R; Luquet S; Muccioli GG; Cani PD
    Am J Physiol Endocrinol Metab; 2020 Sep; 319(3):E647-E657. PubMed ID: 32776827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role for dopamine-3 receptor in the hyperphagia of an unanticipated high-fat meal in rats.
    Davis JF; McQuade JA; Drazen DL; Woods SC; Seeley RJ; Benoit SC
    Pharmacol Biochem Behav; 2006 Sep; 85(1):190-7. PubMed ID: 16978686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.