BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16531043)

  • 1. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans.
    Pradhan N; Das B; Gahan CS; Kar RN; Sukla LB
    Bioresour Technol; 2006 Oct; 97(15):1876-9. PubMed ID: 16531043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.
    Mulligan CN; Kamali M; Gibbs BF
    J Hazard Mater; 2004 Jul; 110(1-3):77-84. PubMed ID: 15177728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Effects of Aspergillus niger and Aspergillus ficuum on the Removal of Impurities in Feldspar by Bio-beneficiation.
    Arslan V
    Appl Biochem Biotechnol; 2019 Oct; 189(2):437-447. PubMed ID: 31049882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of gibberellic acid by Aspergillus niger using some food industry wastes.
    Cihangir N; Aksöz N
    Acta Microbiol Pol; 1996; 45(3-4):291-7. PubMed ID: 9127484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.
    De Michelis I; Ferella F; Beolchini F; Vegliò F
    Waste Manag; 2009 Jan; 29(1):128-35. PubMed ID: 18556190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.
    Xiao C; Wu X; Chi R
    Appl Biochem Biotechnol; 2015 May; 176(2):518-28. PubMed ID: 25822597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger.
    Biswas S; Dey R; Mukherjee S; Banerjee PC
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1547-59. PubMed ID: 23700146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid production by Aspergillus niger on wet corn distillers grains.
    Xie G; West TP
    Lett Appl Microbiol; 2006 Sep; 43(3):269-73. PubMed ID: 16910930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching.
    Ravalason H; Herpoël-Gimbert I; Record E; Bertaud F; Grisel S; de Weert S; van den Hondel CA; Asther M; Petit-Conil M; Sigoillot JC
    J Biotechnol; 2009 Jul; 142(3-4):220-6. PubMed ID: 19414054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S
    Bioresour Technol; 2008 Apr; 99(6):1682-9. PubMed ID: 17512728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield production of oxalic acid for metal leaching processes by Aspergillus niger.
    Strasser H; Burgstaller W; Schinner F
    FEMS Microbiol Lett; 1994 Jun; 119(3):365-70. PubMed ID: 8050718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.
    Vakilchap F; Mousavi SM; Shojaosadati SA
    Bioresour Technol; 2016 Oct; 218():991-8. PubMed ID: 27450129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching of a silicate and carbonate copper ore with heterotrophic fungi and bacteria, producing organic acids.
    Kiel H; Schwartz W
    Z Allg Mikrobiol; 1980; 20(10):627-36. PubMed ID: 7222743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of microorganisms in the destruction of spodumene].
    Karavaĭko GI; Krutsko VS; Mel'nikova EO; Avakian ZA; Ostroushko IuI
    Mikrobiologiia; 1980; 49(3):547-51. PubMed ID: 6995818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Leaching of uranium containing phosphorites with heterotrophic microorganisms].
    Kullmann KH; Schwartz W
    Z Allg Mikrobiol; 1982; 22(1):41-7. PubMed ID: 7072261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.
    Amin MM; Elaassy IE; El-Feky MG; Sallam AS; Talaat MS; Kawady NA
    J Environ Radioact; 2014 Aug; 134():76-82. PubMed ID: 24682031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.
    Khalaf MA
    Bioresour Technol; 2008 Sep; 99(14):6631-4. PubMed ID: 18242981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.
    Cassland P; Sjöde A; Winestrand S; Jönsson LJ; Nilvebrant NO
    Appl Biochem Biotechnol; 2010 May; 161(1-8):255-63. PubMed ID: 19763895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.