These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16531224)

  • 1. Simulation of diffusion time of small molecules in protein crystals.
    Geremia S; Campagnolo M; Demitri N; Johnson LN
    Structure; 2006 Mar; 14(3):393-400. PubMed ID: 16531224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scientific approach to the optimization of protein crystallization conditions for microgravity experiments.
    Yoshizaki I; Nakamura H; Fukuyama S; Komatsu H; Yoda S
    Ann N Y Acad Sci; 2004 Nov; 1027():28-47. PubMed ID: 15644343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background.
    Derrick TS; McCord EF; Larive CK
    J Magn Reson; 2002 Apr; 155(2):217-25. PubMed ID: 12036332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between pore sizes of protein crystals and anisotropic solute diffusivities.
    Cvetkovic A; Picioreanu C; Straathof AJ; Krishna R; van der Wielen LA
    J Am Chem Soc; 2005 Jan; 127(3):875-9. PubMed ID: 15656625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a model for seeded isothermal batch protein crystallization.
    Carbone MN; Judge RA; Etzel MR
    Biotechnol Bioeng; 2005 Jul; 91(1):84-90. PubMed ID: 15889398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations.
    Blake-Hall J; Walker O; Fushman D
    Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion in protein crystals--a computer simulation.
    Malek K; Odijk T; Coppens MO
    Chemphyschem; 2004 Oct; 5(10):1596-9. PubMed ID: 15535560
    [No Abstract]   [Full Text] [Related]  

  • 10. An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation.
    Ryabov YE; Geraghty C; Varshney A; Fushman D
    J Am Chem Soc; 2006 Dec; 128(48):15432-44. PubMed ID: 17132010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations for water and ions in protein crystals.
    Hu Z; Jiang J
    Langmuir; 2008 Apr; 24(8):4215-23. PubMed ID: 18318554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein folding stabilizing time measurement: a direct folding process and three-dimensional random walk simulation.
    Chang CC; Lin PY; Yeh XC; Deng KH; Ho YP; Kan LS
    Biochem Biophys Res Commun; 2005 Mar; 328(4):845-50. PubMed ID: 15707956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis.
    Wine Y; Cohen-Hadar N; Freeman A; Frolow F
    Biotechnol Bioeng; 2007 Oct; 98(3):711-8. PubMed ID: 17461426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations.
    Hu Z; Jiang J; Sandler SI
    J Chem Phys; 2008 Aug; 129(7):075105. PubMed ID: 19044806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of binary diffusion in protein crystals.
    Cvetkovic A; Picioreanu C; Straathof AJ; Krishna R; van der Wielen LA
    J Phys Chem B; 2005 Jun; 109(21):10561-6. PubMed ID: 16852280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach.
    Pan W; Kolomeisky AB; Vekilov PG
    J Chem Phys; 2005 May; 122(17):174905. PubMed ID: 15910067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic protein-protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness.
    Schlosshauer M; Baker D
    Protein Sci; 2004 Jun; 13(6):1660-9. PubMed ID: 15133165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of surface active molecules on the crystallization of biominerals in solution.
    Sikirić MD; Füredi-Milhofer H
    Adv Colloid Interface Sci; 2006 Dec; 128-130():135-58. PubMed ID: 17254533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional protein crystals on a solid substrate: effect of surface ligand concentration.
    Lou C; Wang Z; Wang SW
    Langmuir; 2007 Sep; 23(19):9752-9. PubMed ID: 17691830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.