These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Ohyama K; Suzuki M; Kikuchi J; Saito K; Muranaka T Proc Natl Acad Sci U S A; 2009 Jan; 106(3):725-30. PubMed ID: 19139393 [TBL] [Abstract][Full Text] [Related]
5. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Sawai S; Akashi T; Sakurai N; Suzuki H; Shibata D; Ayabe S; Aoki T Plant Cell Physiol; 2006 May; 47(5):673-7. PubMed ID: 16531457 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning of the human gene encoding lanosterol synthase from a liver cDNA library. Baker CH; Matsuda SP; Liu DR; Corey EJ Biochem Biophys Res Commun; 1995 Aug; 213(1):154-60. PubMed ID: 7639730 [TBL] [Abstract][Full Text] [Related]
7. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Corey EJ; Matsuda SP; Bartel B Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11628-32. PubMed ID: 7505443 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic insights into oxidosqualene cyclizations through homology modeling. Schulz-Gasch T; Stahl M J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166 [TBL] [Abstract][Full Text] [Related]
9. Directed evolution to generate cycloartenol synthase mutants that produce lanosterol. Meyer MM; Xu R; Matsuda SP Org Lett; 2002 Apr; 4(8):1395-8. PubMed ID: 11950371 [TBL] [Abstract][Full Text] [Related]
10. Beta-amyrin synthase--cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Kushiro T; Shibuya M; Ebizuka Y Eur J Biochem; 1998 Aug; 256(1):238-44. PubMed ID: 9746369 [TBL] [Abstract][Full Text] [Related]
11. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. Lodeiro S; Schulz-Gasch T; Matsuda SP J Am Chem Soc; 2005 Oct; 127(41):14132-3. PubMed ID: 16218577 [TBL] [Abstract][Full Text] [Related]
12. Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. Shibuya M; Hoshino M; Katsube Y; Hayashi H; Kushiro T; Ebizuka Y FEBS J; 2006 Mar; 273(5):948-59. PubMed ID: 16478469 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK; Chang CH; Liu YT; Wang TT Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480 [TBL] [Abstract][Full Text] [Related]
14. Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Matsuda SP; Darr LB; Hart EA; Herrera JB; McCann KE; Meyer MM; Pang J; Schepmann HG Org Lett; 2000 Jul; 2(15):2261-3. PubMed ID: 10930258 [TBL] [Abstract][Full Text] [Related]
15. Squalene cyclase and oxidosqualene cyclase from a fern. Shinozaki J; Shibuya M; Masuda K; Ebizuka Y FEBS Lett; 2008 Jan; 582(2):310-8. PubMed ID: 18154734 [TBL] [Abstract][Full Text] [Related]
16. Divergent evolution of oxidosqualene cyclases in plants. Xue Z; Duan L; Liu D; Guo J; Ge S; Dicks J; ÓMáille P; Osbourn A; Qi X New Phytol; 2012 Mar; 193(4):1022-1038. PubMed ID: 22150097 [TBL] [Abstract][Full Text] [Related]
17. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593 [TBL] [Abstract][Full Text] [Related]
18. Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: biosynthesis of the antitumor clavaric acid. Godio RP; Martín JF Fungal Genet Biol; 2009 Mar; 46(3):232-42. PubMed ID: 19130892 [TBL] [Abstract][Full Text] [Related]
19. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase. Liu YT; Hu TC; Chang CH; Shie WS; Wu TK Org Lett; 2012 Oct; 14(20):5222-5. PubMed ID: 23043506 [TBL] [Abstract][Full Text] [Related]
20. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. Wu TK; Liu YT; Chang CH; Yu MT; Wang HJ J Am Chem Soc; 2006 May; 128(19):6414-9. PubMed ID: 16683806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]