BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16531458)

  • 1. Lanosterol synthase in dicotyledonous plants.
    Suzuki M; Xiang T; Ohyama K; Seki H; Saito K; Muranaka T; Hayashi H; Katsube Y; Kushiro T; Shibuya M; Ebizuka Y
    Plant Cell Physiol; 2006 May; 47(5):565-71. PubMed ID: 16531458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.
    Gas-Pascual E; Berna A; Bach TJ; Schaller H
    PLoS One; 2014; 9(10):e109156. PubMed ID: 25343375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanosterol biosynthesis in plants.
    Kolesnikova MD; Xiong Q; Lodeiro S; Hua L; Matsuda SP
    Arch Biochem Biophys; 2006 Mar; 447(1):87-95. PubMed ID: 16445886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.
    Ohyama K; Suzuki M; Kikuchi J; Saito K; Muranaka T
    Proc Natl Acad Sci U S A; 2009 Jan; 106(3):725-30. PubMed ID: 19139393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes.
    Sawai S; Akashi T; Sakurai N; Suzuki H; Shibata D; Ayabe S; Aoki T
    Plant Cell Physiol; 2006 May; 47(5):673-7. PubMed ID: 16531457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning of the human gene encoding lanosterol synthase from a liver cDNA library.
    Baker CH; Matsuda SP; Liu DR; Corey EJ
    Biochem Biophys Res Commun; 1995 Aug; 213(1):154-60. PubMed ID: 7639730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen.
    Corey EJ; Matsuda SP; Bartel B
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11628-32. PubMed ID: 7505443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution to generate cycloartenol synthase mutants that produce lanosterol.
    Meyer MM; Xu R; Matsuda SP
    Org Lett; 2002 Apr; 4(8):1395-8. PubMed ID: 11950371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-amyrin synthase--cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants.
    Kushiro T; Shibuya M; Ebizuka Y
    Eur J Biochem; 1998 Aug; 256(1):238-44. PubMed ID: 9746369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase.
    Lodeiro S; Schulz-Gasch T; Matsuda SP
    J Am Chem Soc; 2005 Oct; 127(41):14132-3. PubMed ID: 16218577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay.
    Shibuya M; Hoshino M; Katsube Y; Hayashi H; Kushiro T; Ebizuka Y
    FEBS J; 2006 Mar; 273(5):948-59. PubMed ID: 16478469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation.
    Matsuda SP; Darr LB; Hart EA; Herrera JB; McCann KE; Meyer MM; Pang J; Schepmann HG
    Org Lett; 2000 Jul; 2(15):2261-3. PubMed ID: 10930258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squalene cyclase and oxidosqualene cyclase from a fern.
    Shinozaki J; Shibuya M; Masuda K; Ebizuka Y
    FEBS Lett; 2008 Jan; 582(2):310-8. PubMed ID: 18154734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent evolution of oxidosqualene cyclases in plants.
    Xue Z; Duan L; Liu D; Guo J; Ge S; Dicks J; ÓMáille P; Osbourn A; Qi X
    New Phytol; 2012 Mar; 193(4):1022-1038. PubMed ID: 22150097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis.
    Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL
    Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: biosynthesis of the antitumor clavaric acid.
    Godio RP; Martín JF
    Fungal Genet Biol; 2009 Mar; 46(3):232-42. PubMed ID: 19130892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase.
    Liu YT; Hu TC; Chang CH; Shie WS; Wu TK
    Org Lett; 2012 Oct; 14(20):5222-5. PubMed ID: 23043506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions.
    Wu TK; Liu YT; Chang CH; Yu MT; Wang HJ
    J Am Chem Soc; 2006 May; 128(19):6414-9. PubMed ID: 16683806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.