These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 16531499)
41. Uncovering the Mechanism of Azepino-Indole Skeleton Formation via Pictet-Spengler Reaction by Strictosidine Synthase: A Quantum Chemical Investigation. Mou M; Zhang C; Zhang S; Chen F; Su H; Sheng X ChemistryOpen; 2023 Jun; 12(6):e202300043. PubMed ID: 37248801 [TBL] [Abstract][Full Text] [Related]
42. Redesign of a central enzyme in alkaloid biosynthesis. Chen S; Galan MC; Coltharp C; O'Connor SE Chem Biol; 2006 Nov; 13(11):1137-41. PubMed ID: 17113995 [TBL] [Abstract][Full Text] [Related]
43. Transient expression of strictosidine synthase in tobacco leaves by vacuum infiltration. Wang M; Li QR Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Nov; 34(6):703-6. PubMed ID: 12417910 [TBL] [Abstract][Full Text] [Related]
44. Binding order and apparent binding affinity in the bisubstrate activity of strictosidine synthase. Kulhar N; Rajakumara E J Biomol Struct Dyn; 2023; 41(24):15634-15646. PubMed ID: 36943789 [TBL] [Abstract][Full Text] [Related]
45. Expanding the Diversity of Plant Monoterpenoid Indole Alkaloids Employing Human Cytochrome P450 3A4. Sheludko YV; Volk J; Brandt W; Warzecha H Chembiochem; 2020 Jul; 21(14):1976-1980. PubMed ID: 32181956 [TBL] [Abstract][Full Text] [Related]
46. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. Harris JM; McIntosh EM; Muscat GE J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142 [TBL] [Abstract][Full Text] [Related]
47. Isolation and structure elucidation of a new indole alkaloid from Rauvolfia serpentina hairy root culture: the first naturally occurring alkaloid of the raumacline group. Sheludko Y; Gerasimenko I; Kolshorn H; Stöckigt J Planta Med; 2002 May; 68(5):435-9. PubMed ID: 12058321 [TBL] [Abstract][Full Text] [Related]
48. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Ruppert M; Woll J; Giritch A; Genady E; Ma X; Stöckigt J Planta; 2005 Nov; 222(5):888-98. PubMed ID: 16133216 [TBL] [Abstract][Full Text] [Related]
49. Heterologous expression of the plant proteins strictosidine synthase and berberine bridge enzyme in insect cell culture. Kutchan TM; Bock A; Dittrich H Phytochemistry; 1994 Jan; 35(2):353-60. PubMed ID: 7764480 [TBL] [Abstract][Full Text] [Related]
50. Ligand structures of synthetic deoxa-pyranosylamines with raucaffricine and strictosidine glucosidases provide structural insights into their binding and inhibitory behaviours. Xia L; Lin H; Staniek A; Panjikar S; Ruppert M; Hilgers P; Williardt J; Rajendran C; Wang M; Warzecha H; Jäger V; Stöckigt J J Enzyme Inhib Med Chem; 2015 Jun; 30(3):472-8. PubMed ID: 25140865 [TBL] [Abstract][Full Text] [Related]
51. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029 [TBL] [Abstract][Full Text] [Related]
52. Proxy-approach in understanding the bisubstrate activity of strictosidine synthases. Nitin K; Rajakumara E Int J Biol Macromol; 2024 Mar; 262(Pt 2):130091. PubMed ID: 38354931 [TBL] [Abstract][Full Text] [Related]
53. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Zou T; Li S; Liu M; Wang T; Xiao Q; Chen D; Li Q; Liang Y; Zhu J; Liang Y; Deng Q; Wang S; Zheng A; Wang L; Li P Sci Rep; 2017 Jul; 7(1):6863. PubMed ID: 28761138 [TBL] [Abstract][Full Text] [Related]
54. Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend. Zhang X; Zhang Y; Yang G; Xie Y; Xu L; An J; Cui L; Feng Y Enzyme Microb Technol; 2016 Jan; 82():34-41. PubMed ID: 26672446 [TBL] [Abstract][Full Text] [Related]
55. Foundations for directed alkaloid biosynthesis. Bachmann BO Chem Biol; 2007 Aug; 14(8):875-6. PubMed ID: 17719485 [TBL] [Abstract][Full Text] [Related]
56. The 1.7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. Oubrie A; Rozeboom HJ; Kalk KH; Duine JA; Dijkstra BW J Mol Biol; 1999 Jun; 289(2):319-33. PubMed ID: 10366508 [TBL] [Abstract][Full Text] [Related]
57. Polymerase chain reaction comparison of the gene for strictosidine synthase from ten Rauvolfia species. Bracher D; Kutchan TM Plant Cell Rep; 1992 May; 11(4):179-82. PubMed ID: 24202981 [TBL] [Abstract][Full Text] [Related]
58. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Filiz E; Vatansever R; Ozyigit II Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122 [TBL] [Abstract][Full Text] [Related]
59. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Treimer JF; Zenk MH Eur J Biochem; 1979 Nov; 101(1):225-33. PubMed ID: 510306 [TBL] [Abstract][Full Text] [Related]
60. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]