BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16531566)

  • 1. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants.
    Yam GH; Bosshard N; Zuber C; Steinmann B; Roth J
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C1076-82. PubMed ID: 16531566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder.
    Yam GH; Zuber C; Roth J
    FASEB J; 2005 Jan; 19(1):12-8. PubMed ID: 15629890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines.
    Benjamin ER; Flanagan JJ; Schilling A; Chang HH; Agarwal L; Katz E; Wu X; Pine C; Wustman B; Desnick RJ; Lockhart DJ; Valenzano KJ
    J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin.
    Ishii S; Chang HH; Kawasaki K; Yasuda K; Wu HL; Garman SC; Fan JQ
    Biochem J; 2007 Sep; 406(2):285-95. PubMed ID: 17555407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease.
    Porto C; Pisani A; Rosa M; Acampora E; Avolio V; Tuzzi MR; Visciano B; Gagliardo C; Materazzi S; la Marca G; Andria G; Parenti G
    J Inherit Metab Dis; 2012 May; 35(3):513-20. PubMed ID: 22187137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants.
    Siekierska A; De Baets G; Reumers J; Gallardo R; Rudyak S; Broersen K; Couceiro J; Van Durme J; Schymkowitz J; Rousseau F
    J Biol Chem; 2012 Aug; 287(34):28386-97. PubMed ID: 22773828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis.
    Mohamed FE; Al Sorkhy M; Ghattas MA; Al-Gazali L; Al-Dirbashi O; Al-Jasmi F; Ali BR
    Hum Genet; 2020 May; 139(5):657-673. PubMed ID: 32219518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic mouse expressing human mutant alpha-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease.
    Ishii S; Yoshioka H; Mannen K; Kulkarni AB; Fan JQ
    Biochim Biophys Acta; 2004 Nov; 1690(3):250-7. PubMed ID: 15511632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies.
    Germain DP; Fan JQ
    Int J Clin Pharmacol Ther; 2009; 47 Suppl 1():S111-7. PubMed ID: 20040321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of mutant alpha-galactosidase A in the endoplasmic reticulum by 1-deoxygalactonojirimycin leads to trafficking to lysosomes.
    Hamanaka R; Shinohara T; Yano S; Nakamura M; Yasuda A; Yokoyama S; Fan JQ; Kawasaki K; Watanabe M; Ishii S
    Biochim Biophys Acta; 2008 Jun; 1782(6):408-13. PubMed ID: 18381081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease.
    Khanna R; Soska R; Lun Y; Feng J; Frascella M; Young B; Brignol N; Pellegrino L; Sitaraman SA; Desnick RJ; Benjamin ER; Lockhart DJ; Valenzano KJ
    Mol Ther; 2010 Jan; 18(1):23-33. PubMed ID: 19773742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability.
    Lieberman RL; D'aquino JA; Ringe D; Petsko GA
    Biochemistry; 2009 Jun; 48(22):4816-27. PubMed ID: 19374450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and modeling approaches to understand the impact of the Fabry's disease causing mutation (D92Y) on the interaction with pharmacological chaperone 1-deoxygalactonojirimycin (DGJ).
    Thirumal Kumar D; Judith E; Priyadharshini Christy J; Siva R; Tayubi IA; Chakraborty C; George Priya Doss C; Zayed H
    Adv Protein Chem Struct Biol; 2019; 114():341-407. PubMed ID: 30635085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants.
    Yu Y; Mena-Barragán T; Higaki K; Johnson JL; Drury JE; Lieberman RL; Nakasone N; Ninomiya H; Tsukimura T; Sakuraba H; Suzuki Y; Nanba E; Mellet CO; García Fernández JM; Ohno K
    ACS Chem Biol; 2014 Jul; 9(7):1460-9. PubMed ID: 24783948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Gene Variant Amenability for Pharmacological Chaperone Therapy with 1-Deoxygalactonojirimycin in Fabry Disease.
    Lukas J; Cimmaruta C; Liguori L; Pantoom S; Iwanov K; Petters J; Hund C; Bunschkowski M; Hermann A; Cubellis MV; Rolfs A
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-Phenylbutyrate rescues trafficking incompetent mutant alpha-galactosidase A without restoring its functionality.
    Yam GH; Roth J; Zuber C
    Biochem Biophys Res Commun; 2007 Aug; 360(2):375-80. PubMed ID: 17592721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.
    Fan JQ; Ishii S; Asano N; Suzuki Y
    Nat Med; 1999 Jan; 5(1):112-5. PubMed ID: 9883849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease.
    Ishii S; Chang HH; Yoshioka H; Shimada T; Mannen K; Higuchi Y; Taguchi A; Fan JQ
    J Pharmacol Exp Ther; 2009 Mar; 328(3):723-31. PubMed ID: 19106170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study.
    Hughes DA; Nicholls K; Shankar SP; Sunder-Plassmann G; Koeller D; Nedd K; Vockley G; Hamazaki T; Lachmann R; Ohashi T; Olivotto I; Sakai N; Deegan P; Dimmock D; Eyskens F; Germain DP; Goker-Alpan O; Hachulla E; Jovanovic A; Lourenco CM; Narita I; Thomas M; Wilcox WR; Bichet DG; Schiffmann R; Ludington E; Viereck C; Kirk J; Yu J; Johnson F; Boudes P; Benjamin ER; Lockhart DJ; Barlow C; Skuban N; Castelli JP; Barth J; Feldt-Rasmussen U
    J Med Genet; 2017 Apr; 54(4):288-296. PubMed ID: 27834756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interaction of imino sugars with human alpha-galactosidase: Insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease.
    Sugawara K; Tajima Y; Kawashima I; Tsukimura T; Saito S; Ohno K; Iwamoto K; Kobayashi T; Itoh K; Sakuraba H
    Mol Genet Metab; 2009 Apr; 96(4):233-8. PubMed ID: 19181556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.