These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16532613)

  • 1. Effect of loading rate on the compressive mechanics of the immature baboon cervical spine.
    Elias PZ; Nuckley DJ; Ching RP
    J Biomech Eng; 2006 Feb; 128(1):18-23. PubMed ID: 16532613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loading rate effect on mechanical properties of cervical spine ligaments.
    Trajkovski A; Omerovic S; Krasna S; Prebil I
    Acta Bioeng Biomech; 2014; 16(3):13-20. PubMed ID: 25307779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units.
    Nuckley DJ; Hertsted SM; Eck MP; Ching RP
    J Biomech; 2005 Nov; 38(11):2266-75. PubMed ID: 16154414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical assessment of the pediatric cervical spine under bending and tensile loading.
    Ouyang J; Zhu Q; Zhao W; Xu Y; Chen W; Zhong S
    Spine (Phila Pa 1976); 2005 Dec; 30(24):E716-23. PubMed ID: 16371888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load-carrying capacity of the human cervical spine in compression is increased under a follower load.
    Patwardhan AG; Havey RM; Ghanayem AJ; Diener H; Meade KP; Dunlap B; Hodges SD
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1548-54. PubMed ID: 10851105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine.
    Luck JF; Nightingale RW; Song Y; Kait JR; Loyd AM; Myers BS; Bass CR
    Spine (Phila Pa 1976); 2013 Jan; 38(1):E1-12. PubMed ID: 23104191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic tensile failure mechanics of the musculoskeletal neck using a cadaver model.
    Yliniemi EM; Pellettiere JA; Doczy EJ; Nuckley DJ; Perry CE; Ching RP
    J Biomech Eng; 2009 May; 131(5):051001. PubMed ID: 19388771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental biomechanics of the cervical spine: Tension and compression.
    Nuckley DJ; Ching RP
    J Biomech; 2006; 39(16):3045-54. PubMed ID: 16321394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of anterior shear displacement rate on the structural properties of the porcine cervical spine.
    Gallagher KM; Howarth SJ; Callaghan JP
    J Biomech Eng; 2010 Sep; 132(9):091004. PubMed ID: 20815638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a system for in vitro neck muscle force replication in whole cervical spine experiments.
    Panjabi MM; Miura T; Cripton PA; Wang JL; Nain AS; DuBois C
    Spine (Phila Pa 1976); 2001 Oct; 26(20):2214-9. PubMed ID: 11598511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal maturation affects vertebral compressive mechanics and vBMD with sex dependence.
    Nuckley DJ; Eck MP; Carter JW; Ching RP
    Bone; 2004 Sep; 35(3):720-8. PubMed ID: 15336609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine.
    Howarth SJ; Callaghan JP
    J Biomech; 2012 Feb; 45(3):484-90. PubMed ID: 22196209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A biomechanical study on cervical spinal posture and prior loading history affecting spinal compressive strength].
    Ma X; Li QL; Fan YG
    Zhonghua Wai Ke Za Zhi; 2004 Nov; 42(21):1322-4. PubMed ID: 15634435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model.
    Kotani Y; Cunningham BW; Abumi K; Dmitriev AE; Ito M; Hu N; Shikinami Y; McAfee PC; Minami A
    J Neurosurg Spine; 2005 Feb; 2(2):188-94. PubMed ID: 15739532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength of the cervical spine in compression and bending.
    Przybyla AS; Skrzypiec D; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1612-20. PubMed ID: 17621208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.