These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16532613)

  • 21. Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a porcine cervical spine model.
    Gunning JL; Callaghan JP; McGill SM
    Clin Biomech (Bristol, Avon); 2001 Jul; 16(6):471-80. PubMed ID: 11427289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of static torsion on the compressive strength of the spine: an in vitro analysis using a porcine spine model.
    Aultman CD; Drake JD; Callaghan JP; McGill SM
    Spine (Phila Pa 1976); 2004 Aug; 29(15):E304-9. PubMed ID: 15284524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavior of in vivo bone under cyclic loading.
    Seireg A; Kempke W
    J Biomech; 1969 Oct; 2(4):455-61. PubMed ID: 16335144
    [No Abstract]   [Full Text] [Related]  

  • 24. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical response of the human clavicle subjected to dynamic bending.
    Kemper A; Stitzel J; Gabler C; Duma S; Matsuoka F
    Biomed Sci Instrum; 2006; 42():231-6. PubMed ID: 16817613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rheological model for uncalcified parallel-fibred collagenous tissue.
    Viidik A
    J Biomech; 1968 Jan; 1(1):3-11. PubMed ID: 16329304
    [No Abstract]   [Full Text] [Related]  

  • 28. Biomechanics of the aging spine.
    Board D; Stemper BD; Yoganandan N; Pintar FA; Shender B; Paskoff G
    Biomed Sci Instrum; 2006; 42():1-6. PubMed ID: 16817576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shear strength of the human lumbar spine.
    Skrzypiec DM; Klein A; Bishop NE; Stahmer F; PĆ¼schel K; Seidel H; Morlock MM; Huber G
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):646-51. PubMed ID: 22578739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anterior cervical interbody constructs: effect of a repetitive compressive force on the endplate.
    Ordway NR; Rim BC; Tan R; Hickman R; Fayyazi AH
    J Orthop Res; 2012 Apr; 30(4):587-92. PubMed ID: 22002745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cervical spine segment finite element model for traumatic injury prediction.
    DeWit JA; Cronin DS
    J Mech Behav Biomed Mater; 2012 Jun; 10():138-50. PubMed ID: 22520426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material properties of the human lumbar facet joint capsule.
    Little JS; Khalsa PS
    J Biomech Eng; 2005 Feb; 127(1):15-24. PubMed ID: 15868784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contribution of trabecular bone to the stiffness and strength of rat lumbar vertebrae.
    Barak MM; Weiner S; Shahar R
    Spine (Phila Pa 1976); 2010 Oct; 35(22):E1153-9. PubMed ID: 20881656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanical consequences of variation in the mineral content of bone.
    Currey JD
    J Biomech; 1969 Mar; 2(1):1-11. PubMed ID: 16335107
    [No Abstract]   [Full Text] [Related]  

  • 37. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.