These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 16532614)
1. Determination of ultrasound phase velocity in trabecular bone using time dependent phase tracking technique. Lin W; Mittra E; Qin YX J Biomech Eng; 2006 Feb; 128(1):24-9. PubMed ID: 16532614 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study. Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955 [TBL] [Abstract][Full Text] [Related]
3. Dual-frequency ultrasound--new pulse-echo technique for bone densitometry. Riekkinen O; Hakulinen MA; Töyräs J; Jurvelin JS Ultrasound Med Biol; 2008 Oct; 34(10):1703-8. PubMed ID: 18524463 [TBL] [Abstract][Full Text] [Related]
4. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range. Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086 [TBL] [Abstract][Full Text] [Related]
5. Finite element simulation of ultrasound propagation in bone for quantitative ultrasound toward the diagnosis of osteoporosis. Kim SH; Suh HS; Cho MH; Lee SY; Kim TS Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():436-9. PubMed ID: 19964933 [TBL] [Abstract][Full Text] [Related]
6. Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections. Zheng R; Le LH; Sacchi MD; Ta D; Lou E Phys Med Biol; 2007 Oct; 52(19):5855-69. PubMed ID: 17881804 [TBL] [Abstract][Full Text] [Related]
7. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411 [TBL] [Abstract][Full Text] [Related]
8. Velocity dispersion and backscatter in marrow-filled and water-filled trabecular bone samples Lee KI J Acoust Soc Am; 2018 Nov; 144(5):EL386. PubMed ID: 30522272 [TBL] [Abstract][Full Text] [Related]
9. Model-based estimation of quantitative ultrasound variables at the proximal femur. Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418 [TBL] [Abstract][Full Text] [Related]
10. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. Barkmann R; Laugier P; Moser U; Dencks S; Klausner M; Padilla F; Haïat G; Glüer CC IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1197-204. PubMed ID: 18599408 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties of femoral trabecular bone in dogs. Pressel T; Bouguecha A; Vogt U; Meyer-Lindenberg A; Behrens BA; Nolte I; Windhagen H Biomed Eng Online; 2005 Mar; 4():17. PubMed ID: 15774014 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. Bossy E; Talmant M; Defontaine M; Patat F; Laugier P IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):71-9. PubMed ID: 14995018 [TBL] [Abstract][Full Text] [Related]
13. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens. Haïat G; Padilla F; Cleveland RO; Laugier P IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):39-51. PubMed ID: 16471431 [TBL] [Abstract][Full Text] [Related]
14. Application of the Biot model to ultrasound in bone: inverse problem. Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941 [TBL] [Abstract][Full Text] [Related]
15. Distribution of longitudinal wave properties in bovine cortical bone in vitro. Yamato Y; Matsukawa M; Otani T; Yamazaki K; Nagano A Ultrasonics; 2006 Dec; 44 Suppl 1():e233-7. PubMed ID: 16860358 [TBL] [Abstract][Full Text] [Related]
16. Intraosseous monitoring and guiding by ultrasound: a feasibility study. Rosenberg N; Craft A; Halevy-Politch J Ultrasonics; 2014 Feb; 54(2):710-9. PubMed ID: 24112599 [TBL] [Abstract][Full Text] [Related]
17. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy. Wille ML; Langton CM Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950 [TBL] [Abstract][Full Text] [Related]
18. A phantom for quantitative ultrasound of trabecular bone. Clarke AJ; Evans JA; Truscott JG; Milner R; Smith MA Phys Med Biol; 1994 Oct; 39(10):1677-87. PubMed ID: 15551538 [TBL] [Abstract][Full Text] [Related]
19. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone. Riekkinen O; Hakulinen MA; Töyräs J; Jurvelin JS Phys Med Biol; 2007 Dec; 52(23):6961-8. PubMed ID: 18029987 [TBL] [Abstract][Full Text] [Related]
20. Distribution of hydroxyapatite crystallite orientation and ultrasonic wave velocity in ring-shaped cortical bone of bovine femur. Yamato Y; Matsukawa M; Mizukawa H; Yanagitani T; Yamazaki K; Nagano A IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1298-303. PubMed ID: 18599417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]