BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16532817)

  • 1. [Micro-particles of bioceramics could cause cell and tissue damage].
    Lu J; Tang T; Ding H; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):85-9. PubMed ID: 16532817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between bioceramics sintering and micro-particles-induced cellular damages.
    Lu J; Blary MC; Vavasseur S; Descamps M; Anselme K; Hardouin P
    J Mater Sci Mater Med; 2004 Apr; 15(4):361-5. PubMed ID: 15332600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new in vivo screening model for posterior spinal bone formation: comparison of ten calcium phosphate ceramic material treatments.
    Wilson CE; Kruyt MC; de Bruijn JD; van Blitterswijk CA; Oner FC; Verbout AJ; Dhert WJ
    Biomaterials; 2006 Jan; 27(3):302-14. PubMed ID: 16111745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles.
    Fellah BH; Josselin N; Chappard D; Weiss P; Layrolle P
    J Mater Sci Mater Med; 2007 Feb; 18(2):287-94. PubMed ID: 17323160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the microstructure of beta-tricalcium phosphate on the metabolism of subsequently formed bone tissue.
    Okuda T; Ioku K; Yonezawa I; Minagi H; Kawachi G; Gonda Y; Murayama H; Shibata Y; Minami S; Kamihira S; Kurosawa H; Ikeda T
    Biomaterials; 2007 Jun; 28(16):2612-21. PubMed ID: 17316789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of TCP sintering temperatures on MRC-5 fibroblast proliferation and viability.
    Cox M; Trussell B; Ward J; Tucci M; Benghuzzi H
    Biomed Sci Instrum; 2002; 38():173-8. PubMed ID: 12085597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a model for bioresorbability of bioceramic microparticles.
    Bell L; Benghuzzi H; Tucci M; Cason Z
    Biomed Sci Instrum; 2001; 37():161-6. PubMed ID: 11347381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of enzyme histochemistry in evaluation of in vitro and in vivo biocompatibility of HA/TCP].
    Lu B; Lu X; Zhang Z; Li S; Pei F; Li Y; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):631-5. PubMed ID: 15357449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.
    Nilen RW; Richter PW
    J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration.
    Huang Y; Jin X; Zhang X; Sun H; Tu J; Tang T; Chang J; Dai K
    Biomaterials; 2009 Oct; 30(28):5041-8. PubMed ID: 19545889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering.
    Rouahi M; Champion E; Gallet O; Jada A; Anselme K
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):10-9. PubMed ID: 16387480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental study on bone formation induced by porous HA-beta-TCP bioceramics].
    Zhang C
    Zhonghua Wai Ke Za Zhi; 1993 Dec; 31(12):722-5. PubMed ID: 8033701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios.
    Ebrahimi M; Pripatnanont P; Monmaturapoj N; Suttapreyasri S
    J Biomed Mater Res A; 2012 Sep; 100(9):2260-8. PubMed ID: 22499354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.