BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 16532938)

  • 1. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.
    Enger SA; Munck af Rosenschöld P; Rezaei A; Lundqvist H
    Med Phys; 2006 Feb; 33(2):337-41. PubMed ID: 16532938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy.
    Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H
    Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo model of the Studsvik BNCT clinical beam: description and validation.
    Giusti V; Munck af Rosenschöld PM; Sköld K; Montagnini B; Capala J
    Med Phys; 2003 Dec; 30(12):3107-17. PubMed ID: 14713077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations.
    Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G
    Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.
    Wangerin K; Culbertson CN; Jevremovic T
    Health Phys; 2005 Aug; 89(2):135-44. PubMed ID: 16010124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.
    Goorley JT; Kiger WS; Zamenhof RG
    Med Phys; 2002 Feb; 29(2):145-56. PubMed ID: 11865986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fundamental study on hyper-thermal neutrons for neutron capture therapy.
    Sakurai Y; Kobayashi T; Kanda K
    Phys Med Biol; 1994 Dec; 39(12):2217-27. PubMed ID: 15551549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom.
    Geng C; Tang X; Guan F; Johns J; Vasudevan L; Gong C; Shu D; Chen D
    Radiat Prot Dosimetry; 2016 Mar; 168(4):433-40. PubMed ID: 26156875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of SOI microdosimeter in fast neutron beams: experiment and Monte Carlo simulations.
    Vohradsky J; Tran LT; Guatelli S; Chartier L; Vandevoorde C; de Kock EA; Nieto-Camero J; Bolst D; Peracchi S; Höglund C; Rosenfeld AB
    Phys Med; 2021 Oct; 90():176-187. PubMed ID: 34688192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gadolinium neutron capture therapy for brain tumors: a computer study.
    Masiakowski JT; Horton JL; Peters LJ
    Med Phys; 1992; 19(5):1277-84. PubMed ID: 1435610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.
    Natto SA; Lewis DG; Ryde SJ
    Appl Radiat Isot; 1998; 49(5-6):545-7. PubMed ID: 9606084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of silicon microdosimetry measurements in fast neutron therapy.
    Cornelius I; Rosenfeld A; Bradley P
    Australas Phys Eng Sci Med; 2002 Dec; 25(4):168-71. PubMed ID: 12859144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.
    Takada K; Kumada H; Liem PH; Sakurai H; Sakae T
    Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference dosimetry at the neutron capture therapy facility at Studsvik.
    Munck af Rosenschöld PM; Giusti V; Ceberg CP; Capala J; Sköld K; Persson BR
    Med Phys; 2003 Jul; 30(7):1569-79. PubMed ID: 12906175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.