These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16533039)

  • 1. One functional switch mediates reversible and irreversible inactivation of a herpesvirus protease.
    Nomura AM; Marnett AB; Shimba N; Dötsch V; Craik CS
    Biochemistry; 2006 Mar; 45(11):3572-9. PubMed ID: 16533039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auto-inactivation by cleavage within the dimer interface of Kaposi's sarcoma-associated herpesvirus protease.
    Pray TR; Nomura AM; Pennington MW; Craik CS
    J Mol Biol; 1999 Jun; 289(2):197-203. PubMed ID: 10366498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease.
    Batra R; Khayat R; Tong L
    Nat Struct Biol; 2001 Sep; 8(9):810-7. PubMed ID: 11524687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced structure of a helical switch as a mechanism to regulate enzymatic activity.
    Nomura AM; Marnett AB; Shimba N; Dötsch V; Craik CS
    Nat Struct Mol Biol; 2005 Nov; 12(11):1019-20. PubMed ID: 16244665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational change coupling the dimerization and activation of KSHV protease.
    Pray TR; Reiling KK; Demirjian BG; Craik CS
    Biochemistry; 2002 Feb; 41(5):1474-82. PubMed ID: 11814340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional determinants of the Epstein-Barr virus protease.
    Buisson M; Valette E; Hernandez JF; Baudin F; Ebel C; Morand P; Seigneurin JM; Arlaud GJ; Ruigrok RW
    J Mol Biol; 2001 Aug; 311(1):217-28. PubMed ID: 11469870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling.
    Frutos S; Rodriguez-Mias RA; Madurga S; Collinet B; Reboud-Ravaux M; Ludevid D; Giralt E
    Biopolymers; 2007; 88(2):164-73. PubMed ID: 17236209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of phenylalanine hydroxylase: effect of substitutions at Arg68 and Cys237.
    Thórólfsson M; Teigen K; Martínez A
    Biochemistry; 2003 Apr; 42(12):3419-28. PubMed ID: 12653545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure.
    Selwood T; McCaslin DR; Schechter NM
    Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional consequences of the Kaposi's sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements.
    Reiling KK; Pray TR; Craik CS; Stroud RM
    Biochemistry; 2000 Oct; 39(42):12796-803. PubMed ID: 11041844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herpesvirus protease inhibition by dimer disruption.
    Shimba N; Nomura AM; Marnett AB; Craik CS
    J Virol; 2004 Jun; 78(12):6657-65. PubMed ID: 15163756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease.
    Tong L; Qian C; Massariol MJ; Bonneau PR; Cordingley MG; Lagacé L
    Nature; 1996 Sep; 383(6597):272-5. PubMed ID: 8805706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human pro-chymase: a model for the activating transition of granule-associated proteases.
    Reiling KK; Krucinski J; Miercke LJ; Raymond WW; Caughey GH; Stroud RM
    Biochemistry; 2003 Mar; 42(9):2616-24. PubMed ID: 12614156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation.
    Hosfield CM; Elce JS; Davies PL; Jia Z
    EMBO J; 1999 Dec; 18(24):6880-9. PubMed ID: 10601010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme inhibition by allosteric capture of an inactive conformation.
    Lee GM; Shahian T; Baharuddin A; Gable JE; Craik CS
    J Mol Biol; 2011 Sep; 411(5):999-1016. PubMed ID: 21723875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization.
    Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J
    Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity in monomers of human cytomegalovirus protease.
    Holwerda B
    Biochem Biophys Res Commun; 1999 Jun; 259(2):370-3. PubMed ID: 10362516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchy in guanidine unfolding of DLC8 dimer: regulatory functional implications.
    Mohan PM; Joshi MV; Hosur RV
    Biochimie; 2009 Mar; 91(3):401-7. PubMed ID: 19032974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Yokoyama H; Matsui E; Akiba T; Harata K; Matsui I
    J Mol Biol; 2006 May; 358(4):1152-64. PubMed ID: 16574150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.