BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16533048)

  • 1. Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group C protein (XPC) from nuclear excision repair.
    Yang A; Miron S; Mouawad L; Duchambon P; Blouquit Y; Craescu CT
    Biochemistry; 2006 Mar; 45(11):3653-63. PubMed ID: 16533048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, thermodynamic, and cellular characterization of human centrin 2 interaction with xeroderma pigmentosum group C protein.
    Charbonnier JB; Renaud E; Miron S; Le Du MH; Blouquit Y; Duchambon P; Christova P; Shosheva A; Rose T; Angulo JF; Craescu CT
    J Mol Biol; 2007 Nov; 373(4):1032-46. PubMed ID: 17897675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics and thermodynamics of the human centrin 2/hSfi1 complex.
    Martinez-Sanz J; Kateb F; Assairi L; Blouquit Y; Bodenhausen G; Abergel D; Mouawad L; Craescu CT
    J Mol Biol; 2010 Jan; 395(1):191-204. PubMed ID: 19857500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein.
    Nishi R; Okuda Y; Watanabe E; Mori T; Iwai S; Masutani C; Sugasawa K; Hanaoka F
    Mol Cell Biol; 2005 Jul; 25(13):5664-74. PubMed ID: 15964821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carboxy-terminal domain of xeroderma pigmentosum complementation group C protein, involved in TFIIH and centrin binding, is highly disordered.
    Miron S; Duchambon P; Blouquit Y; Durand D; Craescu CT
    Biochemistry; 2008 Feb; 47(5):1403-13. PubMed ID: 18177054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow backbone dynamics of the C-terminal fragment of human centrin 2 in complex with a target peptide probed by cross-correlated relaxation in multiple-quantum NMR spectroscopy.
    Kateb F; Abergel D; Blouquit Y; Duchambon P; Craescu CT; Bodenhausen G
    Biochemistry; 2006 Dec; 45(50):15011-9. PubMed ID: 17154538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the human centrin 2-xeroderma pigmentosum group C protein complex.
    Thompson JR; Ryan ZC; Salisbury JL; Kumar R
    J Biol Chem; 2006 Jul; 281(27):18746-52. PubMed ID: 16627479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N-terminal domain of human centrin 2 has a closed structure, binds calcium with a very low affinity, and plays a role in the protein self-assembly.
    Yang A; Miron S; Duchambon P; Assairi L; Blouquit Y; Craescu CT
    Biochemistry; 2006 Jan; 45(3):880-9. PubMed ID: 16411764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin.
    Popescu A; Miron S; Blouquit Y; Duchambon P; Christova P; Craescu CT
    J Biol Chem; 2003 Oct; 278(41):40252-61. PubMed ID: 12890685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and backbone dynamics of the XPC-binding domain of the human DNA repair protein hHR23B.
    Kim B; Ryu KS; Kim HJ; Cho SJ; Choi BS
    FEBS J; 2005 May; 272(10):2467-76. PubMed ID: 15885096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain.
    Matei E; Miron S; Blouquit Y; Duchambon P; Durussel I; Cox JA; Craescu CT
    Biochemistry; 2003 Feb; 42(6):1439-50. PubMed ID: 12578356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scherffelia dubia centrin exhibits a specific mechanism for Ca(2+)-controlled target binding.
    Radu L; Durussel I; Assairi L; Blouquit Y; Miron S; Cox JA; Craescu CT
    Biochemistry; 2010 May; 49(20):4383-94. PubMed ID: 20408559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMO-dependent regulation of centrin-2.
    Klein UR; Nigg EA
    J Cell Sci; 2009 Sep; 122(Pt 18):3312-21. PubMed ID: 19706679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.
    Grecu D; Irudayaraj VP; Martinez-Sanz J; Mallet JM; Assairi L
    Peptides; 2016 Apr; 78():77-86. PubMed ID: 26923803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies on the Ca2+-binding domain of human nucleobindin (calnuc).
    de Alba E; Tjandra N
    Biochemistry; 2004 Aug; 43(31):10039-49. PubMed ID: 15287731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of human centrin 2 to the centrosomal protein hSfi1.
    Martinez-Sanz J; Yang A; Blouquit Y; Duchambon P; Assairi L; Craescu CT
    FEBS J; 2006 Oct; 273(19):4504-15. PubMed ID: 16956364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing structural and motional features of the C-terminal part of the Human Centrin 2/P17-XPC microcrystalline complex by solid-state NMR spectroscopy.
    Herbert-Pucheta JE; Chan-Huot M; Duma L; Abergel D; Bodenhausen G; Assairi L; Blouquit Y; Charbonnier JB; Tekely P
    J Phys Chem B; 2012 Dec; 116(50):14581-91. PubMed ID: 23190348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation.
    Yasuda G; Nishi R; Watanabe E; Mori T; Iwai S; Orioli D; Stefanini M; Hanaoka F; Sugasawa K
    Mol Cell Biol; 2007 Oct; 27(19):6606-14. PubMed ID: 17682058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of calcium, magnesium, and target peptides to Cdc31, the centrin of yeast Saccharomyces cerevisiae.
    Miron S; Durand D; Chilom C; PĂ©rez J; Craescu CT
    Biochemistry; 2011 Jul; 50(29):6409-22. PubMed ID: 21714500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA.
    Ikegami T; Kuraoka I; Saijo M; Kodo N; Kyogoku Y; Morikawa K; Tanaka K; Shirakawa M
    Nat Struct Biol; 1998 Aug; 5(8):701-6. PubMed ID: 9699634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.