These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 1653323)

  • 61. Effects of adenine nucleosides and nucleotides on neuromuscular transmission to the prostatic stroma of the rat.
    Preston A; Lau WA; Pennefather JN; Ventura S
    Br J Pharmacol; 2000 Nov; 131(6):1073-80. PubMed ID: 11082113
    [TBL] [Abstract][Full Text] [Related]  

  • 62. L-citrulline inhibits [3H]acetylcholine release from rat motor nerve terminals by increasing adenosine outflow and activation of A1 receptors.
    Barroso A; Oliveira L; Campesatto-Mella E; Silva C; Timóteo MA; Magalhães-Cardoso MT; Alves-do-Prado W; Correia-de-Sá P
    Br J Pharmacol; 2007 Jun; 151(4):541-50. PubMed ID: 17401439
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanisms of depression of neuromuscular transmission by ATP and adenosine.
    Ribeiro JA; Dominguez ML
    J Physiol (Paris); 1978; 74(5):491-6. PubMed ID: 217997
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.
    Elnozahi NA; AlQot HE; Mohy El-Din MM; Bistawroos AE; Abou Zeit-Har MS
    Neuroscience; 2016 Jun; 326():45-55. PubMed ID: 27060487
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The role of endogenous adenosine in a poststimulation increase in the acetylcholine content of a sympathetic ganglion.
    Tandon A; Collier B
    J Neurosci; 1994 Aug; 14(8):4927-36. PubMed ID: 8046461
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Long-term regulation of synaptic acetylcholine release and nicotinic transmission: the role of cyclic AMP.
    Briggs CA; McAfee DA; McCaman RE
    Br J Pharmacol; 1988 Feb; 93(2):399-411. PubMed ID: 2833971
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction.
    Silinsky EM
    J Physiol; 2004 Jul; 558(Pt 2):389-401. PubMed ID: 15146054
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid decline in acetylcholine release and content of rat extensor digitorum longus muscle after denervation.
    Linden DC; Newton MW; Grinnell AD; Jenden DJ
    Exp Neurol; 1983 Sep; 81(3):613-26. PubMed ID: 6884472
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evidence for specific adenosine receptors at cholinergic nerve endings.
    Silinsky EM
    Br J Pharmacol; 1980; 71(1):191-4. PubMed ID: 6258686
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Excitatory action of ATP on embryonic chick muscle.
    Hume RI; Honig MG
    J Neurosci; 1986 Mar; 6(3):681-90. PubMed ID: 3007690
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulatory Roles of ATP and Adenosine in Cholinergic Neuromuscular Transmission.
    Ziganshin AU; Khairullin AE; Hoyle CHV; Grishin SN
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899290
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence to suggest that cytosolic acetylcholine in rat hippocampal nerve terminals is not directly transferred into synaptic vesicles for release.
    Carroll PT
    Brain Res; 1996 Jun; 725(1):3-10. PubMed ID: 8828580
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adenosine 5'-triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex.
    Phillis JW; O'Regan MH; Perkins LM
    Neurosci Lett; 1993 Mar; 151(1):94-6. PubMed ID: 8469442
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inhibitory effect of hypoxic condition on acetylcholine release is partly due to the effect of adenosine released from the tissue.
    Milusheva E; Sperlágh B; Kiss B; Szporny L; Pásztor E; Papasova M; Vizi ES
    Brain Res Bull; 1990 Mar; 24(3):369-73. PubMed ID: 2337817
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner.
    Pustovit KB; Potekhina VM; Ivanova AD; Petrov AM; Abramochkin DV; Kuzmin VS
    Purinergic Signal; 2019 Mar; 15(1):107-117. PubMed ID: 30756226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Role of recovery of acetylcholine release in compromised neuromuscular junction function.
    Winther JB; Morgen JJ; Skov M; Broch-Lips MG; Nielsen OB; Overgaard K; Pedersen TH
    Neuromuscul Disord; 2024 Mar; 36():48-59. PubMed ID: 38359767
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acute caffeine treatment increases extracellular nucleotide hydrolysis from rat striatal and hippocampal synaptosomes.
    da Silva RS; Bruno AN; Battastini AM; Sarkis JJ; Lara DR; Bonan CD
    Neurochem Res; 2003 Aug; 28(8):1249-54. PubMed ID: 12834266
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interplay Between Cholinergic and Adenosinergic Systems in Skeletal Muscle.
    Bernareggi A; Sciancalepore M; Lorenzon P
    Neuroscience; 2020 Jul; 439():41-47. PubMed ID: 31121259
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evidence for two adenine derivative receptors in rat ileum which are not involved in the nonadrenergic, noncholinergic response.
    Bartlett V; Stewart RR; Nakatsu K
    Can J Physiol Pharmacol; 1979 Oct; 57(10):1130-7. PubMed ID: 228828
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine.
    Silinsky EM; Ginsborg BL
    Nature; 1983 Sep 22-28; 305(5932):327-8. PubMed ID: 6604877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.