These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16534619)

  • 1. Genetic pleiotropy in Saccharomyces cerevisiae quantified by high-resolution phenotypic profiling.
    Ericson E; Pylvänäinen I; Fernandez-Ricaud L; Nerman O; Warringer J; Blomberg A
    Mol Genet Genomics; 2006 Jun; 275(6):605-14. PubMed ID: 16534619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a molecular understanding of pleiotropy.
    He X; Zhang J
    Genetics; 2006 Aug; 173(4):1885-91. PubMed ID: 16702416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global view of pleiotropy and phenotypically derived gene function in yeast.
    Dudley AM; Janse DM; Tanay A; Shamir R; Church GM
    Mol Syst Biol; 2005; 1():2005.0001. PubMed ID: 16729036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network hubs buffer environmental variation in Saccharomyces cerevisiae.
    Levy SF; Siegal ML
    PLoS Biol; 2008 Nov; 6(11):e264. PubMed ID: 18986213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness.
    Bauer CR; Li S; Siegal ML
    Mol Syst Biol; 2015 Jan; 11(1):773. PubMed ID: 25609648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of antagonistic pleiotropy in synthetic and natural populations suggests its role in adaptation.
    Yadav A; Radhakrishnan A; Bhanot G; Sinha H
    G3 (Bethesda); 2015 Feb; 5(5):699-709. PubMed ID: 25711830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A negative relationship between mutation pleiotropy and fitness effect in yeast.
    Cooper TF; Ostrowski EA; Travisano M
    Evolution; 2007 Jun; 61(6):1495-9. PubMed ID: 17542856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping.
    Geiler-Samerotte KA; Li S; Lazaris C; Taylor A; Ziv N; Ramjeawan C; Paaby AB; Siegal ML
    PLoS Biol; 2020 Aug; 18(8):e3000836. PubMed ID: 32804946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.
    Ibstedt S; Stenberg S; Bagés S; Gjuvsland AB; Salinas F; Kourtchenko O; Samy JK; Blomberg A; Omholt SW; Liti G; Beltran G; Warringer J
    Mol Biol Evol; 2015 Jan; 32(1):153-61. PubMed ID: 25349282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of dispensable genes is not adaptive in yeast.
    Sliwa P; Korona R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17670-4. PubMed ID: 16314574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast.
    Gatbonton T; Imbesi M; Nelson M; Akey JM; Ruderfer DM; Kruglyak L; Simon JA; Bedalov A
    PLoS Genet; 2006 Mar; 2(3):e35. PubMed ID: 16552446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale phenotypic analysis--the pilot project on yeast chromosome III.
    Rieger KJ; Kaniak A; Coppée JY; Aljinovic G; Baudin-Baillieu A; Orlowska G; Gromadka R; Groudinsky O; Di Rago JP; Slonimski PP
    Yeast; 1997 Dec; 13(16):1547-62. PubMed ID: 9509574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae.
    Regenberg B; Grotkjaer T; Winther O; Fausbøll A; Akesson M; Bro C; Hansen LK; Brunak S; Nielsen J
    Genome Biol; 2006; 7(11):R107. PubMed ID: 17105650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global transcription regulation by DNA topoisomerase I in exponentially growing Saccharomyces cerevisiae cells: activation of telomere-proximal genes by TOP1 deletion.
    Lotito L; Russo A; Chillemi G; Bueno S; Cavalieri D; Capranico G
    J Mol Biol; 2008 Mar; 377(2):311-22. PubMed ID: 18272174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alleles of a gene differ in pleiotropy, often mediated through currency metabolite production, in E. coli and yeast metabolic simulations.
    Alzoubi D; Desouki AA; Lercher MJ
    Sci Rep; 2018 Nov; 8(1):17252. PubMed ID: 30467356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms.
    Tham WH; Zakian VA
    Oncogene; 2002 Jan; 21(4):512-21. PubMed ID: 11850776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability.
    Mattiazzi Usaj M; Sahin N; Friesen H; Pons C; Usaj M; Masinas MPD; Shuteriqi E; Shkurin A; Aloy P; Morris Q; Boone C; Andrews BJ
    Mol Syst Biol; 2020 Feb; 16(2):e9243. PubMed ID: 32064787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene functional trade-offs and the evolution of pleiotropy.
    Guillaume F; Otto SP
    Genetics; 2012 Dec; 192(4):1389-409. PubMed ID: 22982578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae.
    Weiss A; Delproposto J; Giroux CN
    Anal Biochem; 2004 Apr; 327(1):23-34. PubMed ID: 15033507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.