These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 16534697)
1. Influence of water and fat content on compressive stiffness properties of impacted morsellized bone: an experimental ex vivo study on bone pellets. Fosse L; Rønningen H; Benum P; Sandven RB Acta Orthop; 2006 Feb; 77(1):15-22. PubMed ID: 16534697 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: an experimental in vitro study. Fosse L; Rønningen H; Benum P; Lydersen S; Sandven RB J Biomed Mater Res A; 2006 Aug; 78(2):423-31. PubMed ID: 16739109 [TBL] [Abstract][Full Text] [Related]
3. Pressure during compaction of morsellised bone gives an increase in stiffness: an in vitro study. Lunde KB; Kaehler N; Rønningen H; Fosse L J Biomech; 2008; 41(1):231-4. PubMed ID: 17692853 [TBL] [Abstract][Full Text] [Related]
4. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB; Foss OA; Skallerud B J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858 [TBL] [Abstract][Full Text] [Related]
5. Viscoelastic modelling of impacted morsellised bone accurately describes unloading behaviour: an experimental study of stiffness moduli and recoil properties. Fosse L; Muller S; Rønningen H; Irgens F; Benum P J Biomech; 2006; 39(12):2295-302. PubMed ID: 16169553 [TBL] [Abstract][Full Text] [Related]
6. Impacted bone stiffness measured during construction of morsellised bone samples. Fosse L; Rønningen H; Lund-Larsen J; Benum P; Grande L J Biomech; 2004 Nov; 37(11):1757-66. PubMed ID: 15388319 [TBL] [Abstract][Full Text] [Related]
7. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads. Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073 [TBL] [Abstract][Full Text] [Related]
8. Structural characteristics of impaction allografting for revision total hip arthroplasty. Robinson MC; Fernlund G; Dominic Meek RM; Masri BA; Duncan CP; Oxland TR Clin Biomech (Bristol); 2005 Oct; 20(8):853-5. PubMed ID: 16023774 [TBL] [Abstract][Full Text] [Related]
9. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour. Lunde KB; Skallerud B J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806 [TBL] [Abstract][Full Text] [Related]
10. Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model. Omoto O; Yasunaga Y; Adachi N; Deie M; Ochi M Arch Orthop Trauma Surg; 2008 Dec; 128(12):1357-64. PubMed ID: 18758792 [TBL] [Abstract][Full Text] [Related]
11. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study. Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM Clin Biomech (Bristol); 2006 Oct; 21(8):834-40. PubMed ID: 16806616 [TBL] [Abstract][Full Text] [Related]
12. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. Zioupos P Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022 [TBL] [Abstract][Full Text] [Related]
13. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
14. The influence of different tibial stem designs in load sharing and stability at the cement-bone interface in revision TKA. Completo A; Simões JA; Fonseca F; Oliveira M Knee; 2008 Jun; 15(3):227-32. PubMed ID: 18420415 [TBL] [Abstract][Full Text] [Related]
15. Physical exercise improves properties of bone and its collagen network in growing and maturing mice. Isaksson H; Tolvanen V; Finnilä MA; Iivarinen J; Tuukkanen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ Calcif Tissue Int; 2009 Sep; 85(3):247-56. PubMed ID: 19641838 [TBL] [Abstract][Full Text] [Related]
16. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis. Dong XN; Yeni YN; Les CM; Fyhrie DP J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938 [TBL] [Abstract][Full Text] [Related]
17. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
18. The fluid phase of morsellized bone: characterization of viscosity and chemical composition. Lunde KB; Sletmoen M; Stokke BT; Skallerud B J Mech Behav Biomed Mater; 2008 Apr; 1(2):199-205. PubMed ID: 19627784 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical comparison of extended trochanteric osteotomy and slot osteotomy for femoral component revision in total hip arthroplasty. Khanna G; Bourgeault CA; Kyle RF Clin Biomech (Bristol); 2007 Jun; 22(5):599-602. PubMed ID: 17350150 [TBL] [Abstract][Full Text] [Related]
20. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]