BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16534697)

  • 1. Influence of water and fat content on compressive stiffness properties of impacted morsellized bone: an experimental ex vivo study on bone pellets.
    Fosse L; Rønningen H; Benum P; Sandven RB
    Acta Orthop; 2006 Feb; 77(1):15-22. PubMed ID: 16534697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: an experimental in vitro study.
    Fosse L; Rønningen H; Benum P; Lydersen S; Sandven RB
    J Biomed Mater Res A; 2006 Aug; 78(2):423-31. PubMed ID: 16739109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure during compaction of morsellised bone gives an increase in stiffness: an in vitro study.
    Lunde KB; Kaehler N; Rønningen H; Fosse L
    J Biomech; 2008; 41(1):231-4. PubMed ID: 17692853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing.
    Lunde KB; Foss OA; Skallerud B
    J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic modelling of impacted morsellised bone accurately describes unloading behaviour: an experimental study of stiffness moduli and recoil properties.
    Fosse L; Muller S; Rønningen H; Irgens F; Benum P
    J Biomech; 2006; 39(12):2295-302. PubMed ID: 16169553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacted bone stiffness measured during construction of morsellised bone samples.
    Fosse L; Rønningen H; Lund-Larsen J; Benum P; Grande L
    J Biomech; 2004 Nov; 37(11):1757-66. PubMed ID: 15388319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads.
    Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X
    Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characteristics of impaction allografting for revision total hip arthroplasty.
    Robinson MC; Fernlund G; Dominic Meek RM; Masri BA; Duncan CP; Oxland TR
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):853-5. PubMed ID: 16023774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour.
    Lunde KB; Skallerud B
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model.
    Omoto O; Yasunaga Y; Adachi N; Deie M; Ochi M
    Arch Orthop Trauma Surg; 2008 Dec; 128(12):1357-64. PubMed ID: 18758792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of different tibial stem designs in load sharing and stability at the cement-bone interface in revision TKA.
    Completo A; Simões JA; Fonseca F; Oliveira M
    Knee; 2008 Jun; 15(3):227-32. PubMed ID: 18420415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical exercise improves properties of bone and its collagen network in growing and maturing mice.
    Isaksson H; Tolvanen V; Finnilä MA; Iivarinen J; Tuukkanen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ
    Calcif Tissue Int; 2009 Sep; 85(3):247-56. PubMed ID: 19641838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis.
    Dong XN; Yeni YN; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fluid phase of morsellized bone: characterization of viscosity and chemical composition.
    Lunde KB; Sletmoen M; Stokke BT; Skallerud B
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):199-205. PubMed ID: 19627784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of extended trochanteric osteotomy and slot osteotomy for femoral component revision in total hip arthroplasty.
    Khanna G; Bourgeault CA; Kyle RF
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):599-602. PubMed ID: 17350150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.