BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16534724)

  • 1. Intestinal absorption of Stemona alkaloids in a Caco-2 cell model.
    Leung PH; Zhang L; Zuo Z; Lin G
    Planta Med; 2006 Feb; 72(3):211-6. PubMed ID: 16534724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral absorption and antitussive activity of tuberostemonine alkaloids from the roots of Stemona tuberosa.
    Zhou X; Leung PH; Li N; Ye Y; Zhang L; Zuo Z; Lin G
    Planta Med; 2009 May; 75(6):575-80. PubMed ID: 19214944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitussive activity of Stemona alkaloids from Stemona tuberosa.
    Chung HS; Hon PM; Lin G; But PP; Dong H
    Planta Med; 2003 Oct; 69(10):914-20. PubMed ID: 14648394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model.
    Li N; Tsao R; Sui Z; Ma J; Liu Z; Liu Z
    Planta Med; 2012 May; 78(7):692-7. PubMed ID: 22411726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal permeability of antitumor alkaloids from the processed seeds of Strychnos nux-vomica in a Caco-2 cell model.
    Ma L; Yang XW; Xu W; Cai BC; Hattori M
    Planta Med; 2009 May; 75(6):631-4. PubMed ID: 19235686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L; Yang XW
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Studies on predict of absorption of corynanthine, yohimbine, ajmalicine and ajmaline across human intestinal epithelial by using human Caco-2 cells monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2008 Oct; 33(20):2373-7. PubMed ID: 19157132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Absorption of triterpenoid compounds from Indian bread (Poria cocos) across human intestinal epithelial (Caco-2) cells in vitro].
    Zheng Y; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2008 Jul; 33(13):1596-601. PubMed ID: 18837324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal permeability of sesquiterpenes in the caco-2 cell monolayer model.
    Wu Q; Zhao B; Yang XW; Xu W; Zhang P; Zou L; Zhang LX
    Planta Med; 2010 Mar; 76(4):319-24. PubMed ID: 19830652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.
    Yu L; Zeng S
    J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-performance liquid-chromatography with tandem mass spectrometry performing pharmacokinetic and biodistribution studies of croomine, neotuberostemonine and tuberostemonine alkaloids absorbed in the rat plasma after oral administration of Stemonae Radix.
    Sun H; Dong W; Zhang A; Wang W; Wang X
    Fitoterapia; 2012 Dec; 83(8):1699-705. PubMed ID: 23041522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfasalazine transport in in-vitro, ex-vivo and in-vivo absorption models: contribution of efflux carriers and their modulation by co-administration of synthetic nature-identical fruit extracts.
    Mols R; Deferme S; Augustijns P
    J Pharm Pharmacol; 2005 Dec; 57(12):1565-73. PubMed ID: 16354400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model.
    Tian XJ; Yang XW; Yang X; Wang K
    Int J Pharm; 2009 Feb; 367(1-2):58-64. PubMed ID: 18848870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.
    Zha LY; Xu ZR; Wang MQ; Gu LY
    J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):131-40. PubMed ID: 18336409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The constituents of Cibotium barometz and their permeability in the human Caco-2 monolayer cell model.
    Wu Q; Yang XW
    J Ethnopharmacol; 2009 Sep; 125(3):417-22. PubMed ID: 19635547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs.
    Fossati L; Dechaume R; Hardillier E; Chevillon D; Prevost C; Bolze S; Maubon N
    Int J Pharm; 2008 Aug; 360(1-2):148-55. PubMed ID: 18539418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of hop bitter acids across intestinal Caco-2 cell monolayers.
    Cattoor K; Bracke M; Deforce D; De Keukeleire D; Heyerick A
    J Agric Food Chem; 2010 Apr; 58(7):4132-40. PubMed ID: 20329731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitussive effects of Stemona tuberosa with different chemical profiles.
    Xu YT; Hon PM; Jiang RW; Cheng L; Li SH; Chan YP; Xu HX; Shaw PC; But PP
    J Ethnopharmacol; 2006 Nov; 108(1):46-53. PubMed ID: 16750339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability.
    Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI
    Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.