These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 16534904)
21. Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Pi K; Xie X; Ma T; Su C; Li J; Wang Y Water Res; 2020 Aug; 181():115859. PubMed ID: 32438118 [TBL] [Abstract][Full Text] [Related]
22. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Harvey RW; Metge DW; Barber LB; Aiken GR Water Res; 2010 Feb; 44(4):1062-71. PubMed ID: 19822342 [TBL] [Abstract][Full Text] [Related]
23. Adherence of polystyrene microspheres on cave sediment: implications for organic contaminants and microplastics in karst systems. Riddell JL; Vesper DJ; McDonald LM Environ Eng Geosci; 2023 Aug; 29(3):157-168. PubMed ID: 39036589 [TBL] [Abstract][Full Text] [Related]
24. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Harvey RW; Smith RL; George L Appl Environ Microbiol; 1984 Dec; 48(6):1197-202. PubMed ID: 6517587 [TBL] [Abstract][Full Text] [Related]
25. Mobilization of natural colloids from an iron oxide-coated sand aquifer: effect of pH and ionic strength. Bunn RA; Magelky RD; Ryan JN; Elimelech M Environ Sci Technol; 2002 Feb; 36(3):314-22. PubMed ID: 11871543 [TBL] [Abstract][Full Text] [Related]
26. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. Steelman CM; Klazinga DR; Cahill AG; Endres AL; Parker BL J Contam Hydrol; 2017 Oct; 205():12-24. PubMed ID: 28865808 [TBL] [Abstract][Full Text] [Related]
27. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Lorah MM; Cozzarelli IM; Böhlke JK J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178 [TBL] [Abstract][Full Text] [Related]
28. Revisiting the Cape Cod bacteria injection experiment using a stochastic modeling approach. Maxwell RM; Welty C; Harvey RW Environ Sci Technol; 2007 Aug; 41(15):5548-58. PubMed ID: 17822131 [TBL] [Abstract][Full Text] [Related]
29. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876 [TBL] [Abstract][Full Text] [Related]
30. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media. Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489 [TBL] [Abstract][Full Text] [Related]
31. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations. Höhn R; Isenbeck-Schröter M; Kent DB; Davis JA; Jakobsen R; Jann S; Niedan V; Scholz C; Stadler S; Tretner A J Contam Hydrol; 2006 Nov; 88(1-2):36-54. PubMed ID: 16945450 [TBL] [Abstract][Full Text] [Related]
32. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments. Li J; Wang Y; Xue X; Xie X; Siebecker MG; Sparks DL; Wang Y Sci Total Environ; 2020 Nov; 745():140922. PubMed ID: 32736101 [TBL] [Abstract][Full Text] [Related]
33. Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium. Stevenson ME; Blaschke AP; Toze S; Sidhu JP; Ahmed W; van Driezum IH; Sommer R; Kirschner AK; Cervero-Aragó S; Farnleitner AH; Pang L Appl Environ Microbiol; 2015 Jul; 81(13):4277-83. PubMed ID: 25888174 [TBL] [Abstract][Full Text] [Related]
34. Application of a vital fluorescent staining method for simultaneous, near-real-time concentration monitoring of two bacterial strains in an Atlantic coastal plain aquifer in Oyster, Virginia. Fuller ME; Mailloux BJ; Streger SH; Hall JA; Zhang P; Kovacik WP; Vainberg S; Johnson WP; Onstott TC; DeFlaun MF Appl Environ Microbiol; 2004 Mar; 70(3):1680-7. PubMed ID: 15006793 [TBL] [Abstract][Full Text] [Related]
35. A field tracer study of attenuation of atrazine, hexazinone and procymidone in a pumice sand aquifer. Pang L; Close ME Pest Manag Sci; 2001 Dec; 57(12):1142-50. PubMed ID: 11802602 [TBL] [Abstract][Full Text] [Related]
36. Distribution of protozoa in subsurface sediments of a pristine groundwater study site in oklahoma. Sinclair JL; Ghiorse WC Appl Environ Microbiol; 1987 May; 53(5):1157-63. PubMed ID: 16347342 [TBL] [Abstract][Full Text] [Related]
37. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Kumar N; Labille J; Bossa N; Auffan M; Doumenq P; Rose J; Bottero JY Environ Sci Pollut Res Int; 2017 Apr; 24(10):9269-9277. PubMed ID: 28224341 [TBL] [Abstract][Full Text] [Related]
38. Effects of sediment-associated extractable metals, degree of sediment grain sorting, and dissolved organic carbon upon Cryptosporidium parvum removal and transport within riverbank filtration sediments, Sonoma County, California. Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J; Hill MC Environ Sci Technol; 2011 Jul; 45(13):5587-95. PubMed ID: 21634424 [TBL] [Abstract][Full Text] [Related]
39. A field study of nonequilibrium and facilitated transport of Cd in an alluvial gravel aquifer. Pang L; Close M Ground Water; 1999; 37(5):785-92. PubMed ID: 19125932 [TBL] [Abstract][Full Text] [Related]
40. Indigenous microbes induced fluoride release from aquifer sediments. Gao X; Luo W; Luo X; Li C; Zhang X; Wang Y Environ Pollut; 2019 Sep; 252(Pt A):580-590. PubMed ID: 31185346 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]