These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 16534929)
1. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Ruiz-Lozano JM; Azcon R; Gomez M Appl Environ Microbiol; 1995 Feb; 61(2):456-60. PubMed ID: 16534929 [TBL] [Abstract][Full Text] [Related]
2. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress. Vázquez MM; Azcón R; Barea JM Plant Sci; 2001 Jul; 161(2):347-358. PubMed ID: 11448765 [TBL] [Abstract][Full Text] [Related]
3. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Vivas A; Marulanda A; Ruiz-Lozano JM; Barea JM; Azcón R Mycorrhiza; 2003 Oct; 13(5):249-56. PubMed ID: 14593518 [TBL] [Abstract][Full Text] [Related]
4. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions. Mo Y; Wang Y; Yang R; Zheng J; Liu C; Li H; Ma J; Zhang Y; Wei C; Zhang X Front Plant Sci; 2016; 7():644. PubMed ID: 27242845 [TBL] [Abstract][Full Text] [Related]
6. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Al-Karaki G; McMichael B; Zak J Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358 [TBL] [Abstract][Full Text] [Related]
7. Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. Bryla DR; Duniway JM New Phytol; 1997 Aug; 136(4):581-590. PubMed ID: 33863112 [TBL] [Abstract][Full Text] [Related]
8. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Asrar AW; Elhindi KM Saudi J Biol Sci; 2011 Jan; 18(1):93-8. PubMed ID: 23961109 [TBL] [Abstract][Full Text] [Related]
9. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species. Marulanda A; Porcel R; Barea JM; Azcón R Microb Ecol; 2007 Oct; 54(3):543-52. PubMed ID: 17431706 [TBL] [Abstract][Full Text] [Related]
10. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Ortiz N; Armada E; Duque E; Roldán A; Azcón R J Plant Physiol; 2015 Feb; 174():87-96. PubMed ID: 25462971 [TBL] [Abstract][Full Text] [Related]
11. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L. cv. 'Ferdy' is independent of leaf elemental content. Henderson JC; Davies FT New Phytol; 1990 Jul; 115(3):503-510. PubMed ID: 33874273 [TBL] [Abstract][Full Text] [Related]
12. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Sánchez-Blanco MJ; Ferrández T; Morales MA; Morte A; Alarcón JJ J Plant Physiol; 2004 Jun; 161(6):675-82. PubMed ID: 15266714 [TBL] [Abstract][Full Text] [Related]
13. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Wang S; Ren Y; Han L; Nie Y; Zhang S; Xie X; Hu W; Chen H; Tang M Microbiol Spectr; 2023 Mar; 11(2):e0438122. PubMed ID: 36927000 [TBL] [Abstract][Full Text] [Related]
14. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Wu QS; Xia RX J Plant Physiol; 2006 Mar; 163(4):417-25. PubMed ID: 16455355 [TBL] [Abstract][Full Text] [Related]
15. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress. Augé RM; Schekel KA; Wample RL Plant Physiol; 1986 Nov; 82(3):765-70. PubMed ID: 16665108 [TBL] [Abstract][Full Text] [Related]
16. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Ruíz-Sánchez M; Armada E; Muñoz Y; García de Salamone IE; Aroca R; Ruíz-Lozano JM; Azcón R J Plant Physiol; 2011 Jul; 168(10):1031-7. PubMed ID: 21377754 [TBL] [Abstract][Full Text] [Related]
17. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Pinior A; Grunewaldt-Stöcker G; von Alten H; Strasser RJ Mycorrhiza; 2005 Nov; 15(8):596-605. PubMed ID: 16133256 [TBL] [Abstract][Full Text] [Related]
18. EFFECTS OF DROUGHT STRESS ON GROWTH RESPONSE IN CORN, SUDAN GRASS, AND BIG BLUESTEM TO GLOMUS ETUNICATUM. Hetrick BAD; Kitt DG; Wiilson GT New Phytol; 1987 Mar; 105(3):403-410. PubMed ID: 33873902 [TBL] [Abstract][Full Text] [Related]
19. The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of salt-stressed menthol mint (Mentha arvensis). Bharti N; Baghel S; Barnawal D; Yadav A; Kalra A J Sci Food Agric; 2013 Jul; 93(9):2154-61. PubMed ID: 23288591 [TBL] [Abstract][Full Text] [Related]
20. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Li T; Lin G; Zhang X; Chen Y; Zhang S; Chen B Mycorrhiza; 2014 Nov; 24(8):595-602. PubMed ID: 24743902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]