These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16534930)

  • 1. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.
    Kightley D; Nedwell DB; Cooper M
    Appl Environ Microbiol; 1995 Feb; 61(2):592-601. PubMed ID: 16534930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol.
    Dunfield P; Knowles R
    Appl Environ Microbiol; 1995 Aug; 61(8):3129-35. PubMed ID: 16535109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa).
    Bosse U; Frenzel P
    Appl Environ Microbiol; 1997 Apr; 63(4):1199-207. PubMed ID: 16535562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation and assimilation of atmospheric methane by soil methane oxidizers.
    Roslev P; Iversen N; Henriksen K
    Appl Environ Microbiol; 1997 Mar; 63(3):874-80. PubMed ID: 16535554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential inhibition by allylsulfide of nitrification and methane oxidation in freshwater sediment.
    Roy R; Knowles R
    Appl Environ Microbiol; 1995 Dec; 61(12):4278-83. PubMed ID: 16535183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Synthesis and Activity of Ammonia Monooxygenase in Nitrosomonas europaea by Altering pH To Affect NH(inf3) Availability.
    Stein LY; Arp DJ; Hyman MR
    Appl Environ Microbiol; 1997 Nov; 63(11):4588-92. PubMed ID: 16535741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle.
    Raab TK; Lipson DA; Monson RK
    Oecologia; 1996 Nov; 108(3):488-494. PubMed ID: 28307865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrification, soil acidification and streamwater chemistry following deglaciation, glacier bay national park and preserve.
    Stottlemyer R
    Environ Monit Assess; 1989 Apr; 12(1):64. PubMed ID: 24249064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nitrate Availability and the Presence of Glyceria maxima on the Composition and Activity of the Dissimilatory Nitrate-Reducing Bacterial Community.
    Nijburg JW; Coolen M; Gerards S; Gunnewiek P; Laanbroek HJ
    Appl Environ Microbiol; 1997 Mar; 63(3):931-7. PubMed ID: 16535557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.
    Hrad M; Huber-Humer M; Wimmer B; Reichenauer TG
    Waste Manag; 2012 Dec; 32(12):2324-35. PubMed ID: 22749719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials.
    Rachor I; Gebert J; Gröngröft A; Pfeiffer EM
    Waste Manag; 2011 May; 31(5):833-42. PubMed ID: 21067907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of hydrogen in landfill fermentations.
    Mormile MR; Gurijala KR; Robinson JA; McInerney MJ; Suflita JM
    Appl Environ Microbiol; 1996 May; 62(5):1583-8. PubMed ID: 16535310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil.
    Pratt C; Walcroft AS; Deslippe J; Tate KR
    Waste Manag; 2013 Feb; 33(2):412-9. PubMed ID: 23186636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.
    Schroth MH; Eugster W; Gómez KE; Gonzalez-Gil G; Niklaus PA; Oester P
    Waste Manag; 2012 May; 32(5):879-89. PubMed ID: 22143049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of methanogenesis by methyl fluoride: studies of pure and defined mixed cultures of anaerobic bacteria and archaea.
    Janssen PH; Frenzel P
    Appl Environ Microbiol; 1997 Nov; 63(11):4552-7. PubMed ID: 16535736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonium and nitrate as nitrogen sources in two Eriophorum species.
    Koch GW; Bloom AJ; Chapin FS
    Oecologia; 1991 Dec; 88(4):570-573. PubMed ID: 28312628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Low Biomass Yields of the Acetic Acid Bacterium Acetobacter pasteurianus Are Due to a Low Stoichiometry of Respiration-Coupled Proton Translocation.
    Luttik M; Van Spanning R; Schipper D; Van Dijken JP; Pronk JT
    Appl Environ Microbiol; 1997 Sep; 63(9):3345-51. PubMed ID: 16535681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils.
    Schuetz C; Bogner J; Chanton J; Blake D; Morcet M; Kjeldsen P
    Environ Sci Technol; 2003 Nov; 37(22):5150-8. PubMed ID: 14655701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation.
    Kelso B; Smith RV; Laughlin RJ; Lennox SD
    Appl Environ Microbiol; 1997 Dec; 63(12):4679-85. PubMed ID: 16535749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limits and dynamics of methane oxidation in landfill cover soils.
    Spokas KA; Bogner JE
    Waste Manag; 2011 May; 31(5):823-32. PubMed ID: 20096554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.