These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16534951)

  • 1. In Situ Localization of Azospirillum brasilense in the Rhizosphere of Wheat with Fluorescently Labeled, rRNA-Targeted Oligonucleotide Probes and Scanning Confocal Laser Microscopy.
    Assmus B; Hutzler P; Kirchhof G; Amann R; Lawrence JR; Hartmann A
    Appl Environ Microbiol; 1995 Mar; 61(3):1013-9. PubMed ID: 16534951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere.
    O'Neal L; Vo L; Alexandre G
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster.
    Stoffels M; Castellanos T; Hartmann A
    Syst Appl Microbiol; 2001 Apr; 24(1):83-97. PubMed ID: 11403403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization.
    Maroniche GA; Diaz PR; Borrajo MP; Valverde CF; Creus CM
    FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30299474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).
    Herschkovitz Y; Lerner A; Davidov Y; Rothballer M; Hartmann A; Okon Y; Jurkevitch E
    Microb Ecol; 2005 Aug; 50(2):277-88. PubMed ID: 16211327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots.
    Ramirez-Mata A; Pacheco MR; Moreno SJ; Xiqui-Vazquez ML; Baca BE
    Microbiol Res; 2018 Oct; 215():155-163. PubMed ID: 30172303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245.
    Yegorenkova IV; Tregubova KV; Burygin GL; Matora LY; Ignatov VV
    Can J Microbiol; 2016 Mar; 62(3):279-85. PubMed ID: 26863134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-based reclassification of
    Dos Santos Ferreira N; Hayashi Sant' Anna F; Massena Reis V; Ambrosini A; Gazolla Volpiano C; Rothballer M; Schwab S; Baura VA; Balsanelli E; Pedrosa FO; Pereira Passaglia LM; Maltempi de Souza E; Hartmann A; Cassan F; Zilli JE
    Int J Syst Evol Microbiol; 2020 Dec; 70(12):6203-6212. PubMed ID: 33064068
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.
    Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM
    Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D.
    Mehry A; Akbar M; Giti E
    Pak J Biol Sci; 2008 Jun; 11(12):1541-50. PubMed ID: 18819640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation.
    Pagnussat LA; Salcedo F; Maroniche G; Keel C; Valverde C; Creus CM
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27742715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245.
    Rothballer M; Schmid M; Fekete A; Hartmann A
    Environ Microbiol; 2005 Nov; 7(11):1839-46. PubMed ID: 16232298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of the structure of the repeated unit of the Azospirillum brasilense SR75 O-specific polysaccharide and homology of the lps loci in the plasmids of Azospirillum brasilense strains SR75 and Sp245].
    Fedonenko IuP; Borisov IV; Konnova ON; Zdorovenko EL; Katsy EI; Konnova SA; Ignatov VV
    Mikrobiologiia; 2005; 74(5):626-32. PubMed ID: 16315981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-root movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil.
    Bashan Y; Holguin G
    Microb Ecol; 1995 May; 29(3):269-81. PubMed ID: 24185346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization.
    Alfreider A; Pernthaler J; Amann R; Sattler B; Glockner F; Wille A; Psenner R
    Appl Environ Microbiol; 1996 Jun; 62(6):2138-44. PubMed ID: 16535341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Wheat Root Colonization and Plant Development by Azospirillum brasilense Cd. Following Temporary Depression of Rhizosphere Microflora.
    Bashan Y
    Appl Environ Microbiol; 1986 May; 51(5):1067-71. PubMed ID: 16347052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators.
    Couillerot O; Combes-Meynet E; Pothier JF; Bellvert F; Challita E; Poirier MA; Rohr R; Comte G; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1694-1705. PubMed ID: 21273247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functioning of plant-bacterial associations under osmotic stress in vitro.
    Evseeva NV; Tkachenko OV; Denisova AY; Burygin GL; Veselov DS; Matora LY; Shchyogolev SY
    World J Microbiol Biotechnol; 2019 Nov; 35(12):195. PubMed ID: 31784916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy.
    Wagner M; Assmus B; Hartmann A; Hutzler P; Amann R
    J Microsc; 1994 Dec; 176(Pt 3):181-7. PubMed ID: 7532718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA.
    Wu CH; Hwang YC; Lee W; Mulchandani A; Wood TK; Yates MV; Chen W
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):511-8. PubMed ID: 18389235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.