These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16535086)

  • 1. Minimizing Ergosterol Loss during Preanalytical Handling and Shipping of Samples of Plant Litter.
    Newell SY
    Appl Environ Microbiol; 1995 Jul; 61(7):2794-7. PubMed ID: 16535086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water potential of standing-dead shoots of an intertidal grass.
    Newell SY; Arsuffi TL; Kemp PF; Scott LA
    Oecologia; 1991 Jan; 85(3):321-326. PubMed ID: 28312035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autumnal biomass and potential productivity of salt marsh fungi from 29 degrees to 43 degrees north latitude along the United States Atlantic Coast.
    Newell SY; Blum LK; Crawford RE; Dai T; Dionne M
    Appl Environ Microbiol; 2000 Jan; 66(1):180-5. PubMed ID: 10618221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Misting and nitrogen fertilization of shoots of a saltmarsh grass: effects upon fungal decay of leaf blades.
    Newell SY; Arsuffi TL; Palm LA
    Oecologia; 1996 Nov; 108(3):495-502. PubMed ID: 28307866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdiversity of Culturable Diazotrophs from the Rhizoplanes of the Salt Marsh Grasses Spartina alterniflora and Juncus roemerianus.
    Bagwell CE; Lovell CR
    Microb Ecol; 2000 Feb; 39(2):128-136. PubMed ID: 10833225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants.
    Newell SY; Fallon RD; Cal Rodriguez RM; Groene LC
    Oecologia; 1985 Dec; 68(1):73-79. PubMed ID: 28310914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neighboring plant species creates associational refuge for consumer and host.
    Hughes AR
    Ecology; 2012 Jun; 93(6):1411-20. PubMed ID: 22834381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh.
    Giurgevich JR; Dunn EL
    Oecologia; 1982 Jan; 52(3):404-410. PubMed ID: 28310403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography.
    Newell SY; Arsuffi TL; Fallon RD
    Appl Environ Microbiol; 1988 Jul; 54(7):1876-9. PubMed ID: 16347700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of drainage and soil organic content on growth of Spartina alterniflora (Poaceae) in an artificial salt marsh mesocosm.
    Padgett DE; Brown JL
    Am J Bot; 1999 May; 86(5):697-702. PubMed ID: 10330073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed).
    Windhamt L; Weist JS; Weis P
    Mar Pollut Bull; 2001 Oct; 42(10):811-6. PubMed ID: 11693635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total and free ergosterol in mycelia of saltmarsh ascomycetes with access to whole leaves or aqueous extracts of leaves.
    Newell SY
    Appl Environ Microbiol; 1994 Sep; 60(9):3479-82. PubMed ID: 16349400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergosterol content in various fungal species and biocontaminated building materials.
    Pasanen AL; Yli-Pietila K; Pasanen P; Kalliokoski P; Tarhanen J
    Appl Environ Microbiol; 1999 Jan; 65(1):138-42. PubMed ID: 9872771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ergosterol-to-Biomass Conversion Factors for Aquatic Hyphomycetes.
    Gessner MO; Chauvet E
    Appl Environ Microbiol; 1993 Feb; 59(2):502-7. PubMed ID: 16348874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tropicalization of the barrier islands of the northern Gulf of Mexico: A comparison of herbivory and decomposition rates between smooth cordgrass (Spartina alterniflora) and black mangrove (Avicennia germinans).
    Macy A; Sharma S; Sparks E; Goff J; Heck KL; Johnson MW; Harper P; Cebrian J
    PLoS One; 2019; 14(1):e0210144. PubMed ID: 30615652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass.
    Salazar Alekseyeva K; Mähnert B; Berthiller F; Breyer E; Herndl GJ; Baltar F
    J Fungi (Basel); 2021 Aug; 7(9):. PubMed ID: 34575728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric determination of ergosterol in a prairie natural wetland.
    Headley JV; Peru KM; Verma B; Robarts RD
    J Chromatogr A; 2002 Jun; 958(1-2):149-56. PubMed ID: 12134812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal biomass associated with decaying leaf litter in a stream.
    Gessner MO; Schwoerbel J
    Oecologia; 1991 Sep; 87(4):602-603. PubMed ID: 28313707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.