BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16535121)

  • 1. Determination of effective transport coefficients for bacterial migration in sand columns.
    Barton JW; Ford RM
    Appl Environ Microbiol; 1995 Sep; 61(9):3329-35. PubMed ID: 16535121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model for characterization of bacterial migration through sand cores.
    Barton JW; Ford RM
    Biotechnol Bioeng; 1997 Mar; 53(5):487-96. PubMed ID: 18634044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random walk calculations for bacterial migration in porous media.
    Duffy KJ; Cummings PT; Ford RM
    Biophys J; 1995 Mar; 68(3):800-6. PubMed ID: 7756547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped-flow diffusion chamber assay.
    Ford RM; Phillips BR; Quinn JA; Lauffenburger DA
    Biotechnol Bioeng; 1991 Mar; 37(7):647-60. PubMed ID: 18600656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model.
    Ford RM; Lauffenburger DA
    Biotechnol Bioeng; 1991 Mar; 37(7):661-72. PubMed ID: 18600657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene.
    Pedit JA; Marx RB; Miller CT; Aitken MD
    Biotechnol Bioeng; 2002 Jun; 78(6):626-34. PubMed ID: 11992528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to C5a.
    Farrell BE; Daniele RP; Lauffenburger DA
    Cell Motil Cytoskeleton; 1990; 16(4):279-93. PubMed ID: 2393911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays.
    Lewus P; Ford RM
    Biotechnol Bioeng; 2001 Nov; 75(3):292-304. PubMed ID: 11590602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.
    Tranquillo RT; Zigmond SH; Lauffenburger DA
    Cell Motil Cytoskeleton; 1988; 11(1):1-15. PubMed ID: 3208295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.
    Ahfir ND; Hammadi A; Alem A; Wang H; Le Bras G; Ouahbi T
    J Environ Sci (China); 2017 Mar; 53():161-172. PubMed ID: 28372741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures.
    Ford RM; Lauffenburger DA
    Math Biosci; 1992 May; 109(2):127-49. PubMed ID: 1600283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2009 Aug; 43(15):5921-7. PubMed ID: 19731698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2010 Jan; 44(2):780-6. PubMed ID: 20000726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of bacterial random motility in a porous medium using magnetic resonance imaging and immunomagnetic labeling.
    Sherwood JL; Sung JC; Ford RM; Fernandez EJ; Maneval JE; Smith JA
    Environ Sci Technol; 2003 Feb; 37(4):781-5. PubMed ID: 12636279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The motile response of alveolar macrophages. An experimental study using single-cell and cell population approaches.
    Glasgow JE; Farrell BE; Fisher ES; Lauffenburger DA; Daniele RP
    Am Rev Respir Dis; 1989 Feb; 139(2):320-9. PubMed ID: 2643900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size.
    Sun Y; Gao B; Bradford SA; Wu L; Chen H; Shi X; Wu J
    Water Res; 2015 Jan; 68():24-33. PubMed ID: 25462714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms.
    He JZ; Wang DJ; Fang H; Fu QL; Zhou DM
    Chemosphere; 2017 Feb; 169():1-8. PubMed ID: 27855326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow chamber and image analysis system for quantitative characterization of bacterial population migration: Motility and chemotaxis ofEscherichia coli K12 to fucose.
    Ford RM; Phillips BR; Quinn JA; Lauffenburger DA
    Microb Ecol; 1991 Dec; 22(1):127-38. PubMed ID: 24194332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of porous media preparation on bacteria transport through laboratory columns.
    Brown DG; Stencel JR; Jaffé PR
    Water Res; 2002 Jan; 36(1):105-14. PubMed ID: 11766785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.