These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16535228)

  • 21. Dynamics of bacterial sulfate reduction in a eutrophic lake.
    Ingvorsen K; Zeikus JG; Brock TD
    Appl Environ Microbiol; 1981 Dec; 42(6):1029-36. PubMed ID: 16345898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats.
    Helmke E; Weyland H
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):553-61. PubMed ID: 15559972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-induced alanine oxidation in a psychrotrophic Pseudomonas.
    Zachariah PK; Liston J
    Can J Microbiol; 1975 Dec; 21(12):2028-33. PubMed ID: 3273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of thermophilic consortia from two souring oil reservoirs.
    Mueller RF; Nielsen PH
    Appl Environ Microbiol; 1996 Sep; 62(9):3083-7. PubMed ID: 16535394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of temperature shifts on survival, growth, and toxin production by psychrotrophic and mesophilic strains of Bacillus cereus in potatoes and chicken gravy.
    Mahakarnchanakul W; Beuchat LR
    Int J Food Microbiol; 1999 Mar; 47(3):179-87. PubMed ID: 10359488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate 13C-acetate in coastal marine sediment.
    Na H; Lever MA; Kjeldsen KU; Schulz F; Jørgensen BB
    Environ Microbiol Rep; 2015 Aug; 7(4):614-22. PubMed ID: 25950866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum.
    Rabus R; Brüchert V; Amann J; Könneke M
    FEMS Microbiol Ecol; 2002 Dec; 42(3):409-17. PubMed ID: 19709300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature characterization of psychrotrophic and mesophilic Bacillus species from milk.
    García-Armesto MR; Sutherland AD
    J Dairy Res; 1997 May; 64(2):261-70. PubMed ID: 9161918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments.
    Robador A; Müller AL; Sawicka JE; Berry D; Hubert CR; Loy A; Jørgensen BB; Brüchert V
    ISME J; 2016 Apr; 10(4):796-809. PubMed ID: 26359912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The low-temperature germinating spores of the thermophilic
    Karnachuk OV; Rusanov II; Panova IA; Kadnikov VV; Avakyan MR; Ikkert OP; Lukina AP; Beletsky AV; Mardanov AV; Knyazev YV; Volochaev MN; Pimenov NV; Ravin NV
    Front Microbiol; 2023; 14():1204102. PubMed ID: 37779687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfate Reduction Dynamics and Enumeration of Sulfate-Reducing Bacteria in Hypersaline Sediments of the Great Salt Lake (Utah, USA).
    Brandt KK; Vester F; Jensen AN; Ingvorsen K
    Microb Ecol; 2001 Jan; 41(1):1-11. PubMed ID: 11252159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold Temperature Adaptation and Growth of Microorganisms
    Berry ED; Foegeding PM
    J Food Prot; 1997 Dec; 60(12):1583-1594. PubMed ID: 31207745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold adaptation of microorganisms.
    Russell NJ
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1237):595-608, discussion 608-11. PubMed ID: 1969649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.
    Laufer K; Røy H; Jørgensen BB; Kappler A
    Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments.
    Canion A; Overholt WA; Kostka JE; Huettel M; Lavik G; Kuypers MM
    Environ Microbiol; 2014 Oct; 16(10):3331-44. PubMed ID: 25115991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Growth of mesophilic methanotrophs at low temperatures].
    Kevbrina MV; Okhapkina AA; Akhlynin DS; Kravchenko IK; Nozhevnikova AN; Gal'chenko VF
    Mikrobiologiia; 2001; 70(4):444-51. PubMed ID: 11558268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV; Ivanova AE
    Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermophilic sulfate reduction in hydrothermal sediment of lake tanganyika, East Africa.
    Elsgaard L; Prieur D; Mukwaya GM; Jørgensen BB
    Appl Environ Microbiol; 1994 May; 60(5):1473-80. PubMed ID: 16349249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment.
    Edenborn HM; Brickett LA
    J Microbiol Methods; 2001 Jul; 46(1):51-62. PubMed ID: 11412913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.