These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 16535230)
1. Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Pennanen T; Frostegard A; Fritze H; Baath E Appl Environ Microbiol; 1996 Feb; 62(2):420-8. PubMed ID: 16535230 [TBL] [Abstract][Full Text] [Related]
2. Phospholipid Fatty Acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Frostegård A; Tunlid A; Bååth E Appl Environ Microbiol; 1993 Nov; 59(11):3605-17. PubMed ID: 16349080 [TBL] [Abstract][Full Text] [Related]
3. Effect of metal-rich sludge amendments on the soil microbial community. Bååth E; Díaz-Raviña M; Frostegård S; Campbell CD Appl Environ Microbiol; 1998 Jan; 64(1):238-45. PubMed ID: 16349483 [TBL] [Abstract][Full Text] [Related]
4. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
5. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Bååth E; Díaz-Raviña M; Bakken LR Microb Ecol; 2005 Nov; 50(4):496-505. PubMed ID: 16328661 [TBL] [Abstract][Full Text] [Related]
6. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
7. Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China. Sun H; Wu Y; Bing H; Zhou J; Li N Environ Sci Pollut Res Int; 2018 Feb; 25(6):5740-5751. PubMed ID: 29230650 [TBL] [Abstract][Full Text] [Related]
8. Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Díaz-Raviña M; Bååth E; Frostegård A Appl Environ Microbiol; 1994 Jul; 60(7):2238-47. PubMed ID: 16349314 [TBL] [Abstract][Full Text] [Related]
9. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
10. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest. Rousk J; Rousk K Environ Pollut; 2018 Sep; 240():297-305. PubMed ID: 29747113 [TBL] [Abstract][Full Text] [Related]
11. Microbial community structure and functioning along metal pollution gradients. Azarbad H; Niklińska M; van Gestel CA; van Straalen NM; Röling WF; Laskowski R Environ Toxicol Chem; 2013 Sep; 32(9):1992-2002. PubMed ID: 23637098 [TBL] [Abstract][Full Text] [Related]
12. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Xu Y; Seshadri B; Bolan N; Sarkar B; Ok YS; Zhang W; Rumpel C; Sparks D; Farrell M; Hall T; Dong Z Environ Int; 2019 Apr; 125():478-488. PubMed ID: 30771648 [TBL] [Abstract][Full Text] [Related]
13. Decoding the PLFA profiling of microbial community structure in soils contaminated with municipal solid wastes. Agnihotri R; Gujre N; Mitra S; Sharma MP Environ Res; 2023 Feb; 219():114993. PubMed ID: 36535388 [TBL] [Abstract][Full Text] [Related]
14. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Nilsson LO; Bååth E; Falkengren-Grerup U; Wallander H Oecologia; 2007 Aug; 153(2):375-84. PubMed ID: 17453252 [TBL] [Abstract][Full Text] [Related]
15. Can heavy metal pollution induce bacterial resistance to heavy metals and antibiotics in soils from an ancient land-mine? Zhong Q; Cruz-Paredes C; Zhang S; Rousk J J Hazard Mater; 2021 Jun; 411():124962. PubMed ID: 33440279 [TBL] [Abstract][Full Text] [Related]
16. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. Liu M; Sui X; Hu Y; Feng F BMC Microbiol; 2019 Sep; 19(1):218. PubMed ID: 31519147 [TBL] [Abstract][Full Text] [Related]
17. Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure. Song J; Shen Q; Wang L; Qiu G; Shi J; Xu J; Brookes PC; Liu X Environ Pollut; 2018 Dec; 243(Pt A):510-518. PubMed ID: 30216883 [TBL] [Abstract][Full Text] [Related]
18. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Moore-Kucera J; Dick RP Microb Ecol; 2008 Apr; 55(3):500-11. PubMed ID: 17786504 [TBL] [Abstract][Full Text] [Related]
19. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. Song M; Cheng Z; Luo C; Jiang L; Zhang D; Yin H; Zhang G Environ Sci Pollut Res Int; 2018 Apr; 25(10):9904-9914. PubMed ID: 29374376 [TBL] [Abstract][Full Text] [Related]
20. Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated With Metal-Tolerant Plants in Metalliferous Soils. Borymski S; Cycoń M; Beckmann M; Mur LAJ; Piotrowska-Seget Z Front Microbiol; 2018; 9():1425. PubMed ID: 30061867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]