These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16535269)

  • 1. Use of an ipb-lux Fusion To Study Regulation of the Isopropylbenzene Catabolism Operon of Pseudomonas putida RE204 and To Detect Hydrophobic Pollutants in the Environment.
    Selifonova OV; Eaton RW
    Appl Environ Microbiol; 1996 Mar; 62(3):778-83. PubMed ID: 16535269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4.
    Eaton RW; Selifonova OV; Gedney RM
    Biodegradation; 1998; 9(2):119-32. PubMed ID: 9821257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204.
    Eaton RW; Timmis KN
    J Bacteriol; 1986 Oct; 168(1):123-31. PubMed ID: 3019995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous deletion of a 20-kilobase DNA segment carrying genes specifying isopropylbenzene metabolism in Pseudomonas putida RE204.
    Eaton RW; Timmis KN
    J Bacteriol; 1986 Oct; 168(1):428-30. PubMed ID: 3020004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils.
    Bundy JG; Campbell CD; Paton GI
    J Environ Monit; 2001 Aug; 3(4):404-10. PubMed ID: 11523441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation.
    Pflugmacher U; Averhoff B; Gottschalk G
    Appl Environ Microbiol; 1996 Nov; 62(11):3967-77. PubMed ID: 8899984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and use of an ipb DNA module to generate Pseudomonas strains with constitutive trichloroethene and isopropylbenzene oxidation activity.
    Berendes F; Sabarth N; Averhoff B; Gottschalk G
    Appl Environ Microbiol; 1998 Jul; 64(7):2454-62. PubMed ID: 9647815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing.
    Applegate BM; Kehrmeyer SR; Sayler GS
    Appl Environ Microbiol; 1998 Jul; 64(7):2730-5. PubMed ID: 9647859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-NS protein represses transcription of the lux systems of Vibrio fischeri and other luminous bacteria cloned into Escherichia coli.
    Ulitzur S; Matin A; Fraley C; Meighen E
    Curr Microbiol; 1997 Dec; 35(6):336-42. PubMed ID: 9353217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Host factors in the regulation of the Vibrio fischeri lux operon in Escherichia coli cells].
    Manukhov IV; Kotova VIu; Zavil'gel'skiĭ GB
    Mikrobiologiia; 2006; 75(4):525-31. PubMed ID: 17025179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-NS controls the transcription of three promoters of Vibrio fischeri lux cloned in Escherichia coli.
    Ulitzur S
    J Biolumin Chemilumin; 1998; 13(4):185-8. PubMed ID: 9743441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit.
    Dunlap PV; Greenberg EP
    J Bacteriol; 1988 Sep; 170(9):4040-6. PubMed ID: 3410823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions.
    Burlage RS; Sayler GS; Larimer F
    J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and evaluation of nagR-nagAa::lux fusion strains in biosensing for salicylic acid derivatives.
    Mitchell RJ; Gu MB
    Appl Biochem Biotechnol; 2005 Mar; 120(3):183-98. PubMed ID: 15767693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353.
    Dorn JG; Frye RJ; Maier RM
    Appl Environ Microbiol; 2003 Apr; 69(4):2209-16. PubMed ID: 12676702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744.
    Devine JH; Shadel GS; Baldwin TO
    Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5688-92. PubMed ID: 2762291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters.
    Ben-Israel O; Ben-Israel H; Ulitzur S
    Appl Environ Microbiol; 1998 Nov; 64(11):4346-52. PubMed ID: 9797288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LuxR controls the expression of Vibrio fischeri luxCDABE clone in Escherichia coli in the absence of luxI gene.
    Ulitzur S
    J Biolumin Chemilumin; 1998; 13(6):365-9. PubMed ID: 9926364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of luminescence operon expression by N-octanoyl-L-homoserine lactone in ainS mutants of Vibrio fischeri.
    Kuo A; Callahan SM; Dunlap PV
    J Bacteriol; 1996 Feb; 178(4):971-6. PubMed ID: 8576070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.