These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 16535440)
1. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Asaka O; Shoda M Appl Environ Microbiol; 1996 Nov; 62(11):4081-5. PubMed ID: 16535440 [TBL] [Abstract][Full Text] [Related]
2. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil. Szczech M; Shoda M Can J Microbiol; 2005 May; 51(5):405-11. PubMed ID: 16088336 [TBL] [Abstract][Full Text] [Related]
3. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. Kondoh M; Hirai M; Shoda M J Biosci Bioeng; 2001; 91(2):173-7. PubMed ID: 16232970 [TBL] [Abstract][Full Text] [Related]
4. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Mizumoto S; Hirai M; Shoda M Appl Microbiol Biotechnol; 2007 Jul; 75(6):1267-74. PubMed ID: 17453193 [TBL] [Abstract][Full Text] [Related]
5. Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Mizumoto S; Hirai M; Shoda M Appl Microbiol Biotechnol; 2006 Oct; 72(5):869-75. PubMed ID: 16575567 [TBL] [Abstract][Full Text] [Related]
6. Formulation of biofungicides based on Streptomyces caeruleatus strain ZL-2 spores and efficacy against Rhizoctonia solani damping-off of tomato seedlings. Zamoum M; Allali K; Benadjila A; Zitouni A; Goudjal Y Arch Microbiol; 2022 Sep; 204(10):629. PubMed ID: 36115881 [TBL] [Abstract][Full Text] [Related]
7. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Yao S; Gao X; Fuchsbauer N; Hillen W; Vater J; Wang J Curr Microbiol; 2003 Oct; 47(4):272-7. PubMed ID: 14629006 [TBL] [Abstract][Full Text] [Related]
8. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713 [TBL] [Abstract][Full Text] [Related]
9. Second stage production of iturin A by induced germination of Bacillus subtilis RB14. Rahman MS; Ano T; Shoda M J Biotechnol; 2006 Oct; 125(4):513-5. PubMed ID: 16626834 [TBL] [Abstract][Full Text] [Related]
10. First Report of Damping-Off of Swiss Chard Caused by Rhizoctonia solani AG-4 HG I and Binucleate Rhizoctonia AG-A in China. Yang GH; Conner RL; Chen YY Plant Dis; 2007 Nov; 91(11):1516. PubMed ID: 30780765 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Huang X; Zhang N; Yong X; Yang X; Shen Q Microbiol Res; 2012 Mar; 167(3):135-43. PubMed ID: 21775112 [TBL] [Abstract][Full Text] [Related]
12. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Mizumoto S; Shoda M Appl Microbiol Biotechnol; 2007 Aug; 76(1):101-8. PubMed ID: 17476498 [TBL] [Abstract][Full Text] [Related]
13. Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Ohno A; Ano T; Shoda M Biotechnol Bioeng; 1995 Jul; 47(2):209-14. PubMed ID: 18623394 [TBL] [Abstract][Full Text] [Related]
14. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Tsuge K; Inoue S; Ano T; Itaya M; Shoda M Antimicrob Agents Chemother; 2005 Nov; 49(11):4641-8. PubMed ID: 16251307 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Yield and Surface Tension-lowering Activity of Iturin A Produced by Bacillus subtilis RB14. Habe H; Taira T; Sato Y; Imura T; Ano T J Oleo Sci; 2019 Nov; 68(11):1157-1162. PubMed ID: 31611518 [TBL] [Abstract][Full Text] [Related]
16. Induction of Soil Suppressiveness Against Rhizoctonia solani by Incorporation of Dried Plant Residues into Soil. Kasuya M; Olivier AR; Ota Y; Tojo M; Honjo H; Fukui R Phytopathology; 2006 Dec; 96(12):1372-9. PubMed ID: 18943670 [TBL] [Abstract][Full Text] [Related]
17. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Luo C; Zhou H; Zou J; Wang X; Zhang R; Xiang Y; Chen Z Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of soil microorganisms with inhibitory activity against Rhizoctonia solani causal agent of the damping-off of canola. Ciampi L; Tewari JP Arch Biol Med Exp; 1990 Oct; 23(2):101-12. PubMed ID: 2133515 [TBL] [Abstract][Full Text] [Related]
19. The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani. Huang X; Yong X; Zhang R; Shen Q; Yang X J Basic Microbiol; 2013 Aug; 53(8):657-63. PubMed ID: 23417338 [TBL] [Abstract][Full Text] [Related]
20. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Saber WI; Ghoneem KM; Al-Askar AA; Rashad YM; Ali AA; Rashad EM Acta Biol Hung; 2015 Dec; 66(4):436-48. PubMed ID: 26616375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]