These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16535446)

  • 1. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria.
    Yurkov V; Jappe J; Vermeglio A
    Appl Environ Microbiol; 1996 Nov; 62(11):4195-8. PubMed ID: 16535446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Tellurite on Highly Resistant Freshwater Aerobic Anoxygenic Phototrophs and Their Strategies for Reduction.
    Maltman C; Yurkov V
    Microorganisms; 2015 Nov; 3(4):826-38. PubMed ID: 27682119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov.
    Yurkov V; Stackebrandt E; Holmes A; Fuerst JA; Hugenholtz P; Golecki J; Gad'on N; Gorlenko VM; Kompantseva EI; Drews G
    Int J Syst Bacteriol; 1994 Jul; 44(3):427-34. PubMed ID: 7520734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions.
    Maltman C; Yurkov V
    Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides.
    Moore MD; Kaplan S
    J Bacteriol; 1992 Mar; 174(5):1505-14. PubMed ID: 1537795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes.
    Ollivier PR; Bahrou AS; Marcus S; Cox T; Church TM; Hanson TE
    Appl Environ Microbiol; 2008 Dec; 74(23):7163-73. PubMed ID: 18849455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.
    Bajaj M; Winter J
    Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of tellurite resistance in heterotrophic bacteria from mining environments.
    Farias P; Francisco R; Morais PV
    iScience; 2022 Jul; 25(7):104566. PubMed ID: 35784792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase.
    Garberg P; Engman L; Tolmachev V; Lundqvist H; Gerdes RG; Cotgreave IA
    Int J Biochem Cell Biol; 1999 Feb; 31(2):291-301. PubMed ID: 10216961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and location of tellurium deposited in Escherichia coli cells harbouring tellurite resistance plasmids.
    Taylor DE; Walter EG; Sherburne R; Bazett-Jones DP
    J Ultrastruct Mol Struct Res; 1988 Apr; 99(1):18-26. PubMed ID: 3042886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The membrane-bound respiratory chain of Pseudomonas pseudoalcaligenes KF707 cells grown in the presence or absence of potassium tellurite.
    Di Tomaso G; Fedi S; Carnevali M; Manegatti M; Taddei C; Zannoni D
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1699-1708. PubMed ID: 12055290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative analysis of tellurite detoxification by members of the genus Shewanella.
    Valdivia-González MA; Díaz-Vásquez WA; Ruiz-León D; Becerra AA; Aguayo DR; Pérez-Donoso JM; Vásquez CC
    Arch Microbiol; 2018 Mar; 200(2):267-273. PubMed ID: 29022087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of moderately halotolerant selenate- and tellurite-reducing bacteria isolated from brackish areas in Osaka.
    Soda S; Ma W; Kuroda M; Nishikawa H; Zhang Y; Ike M
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):173-181. PubMed ID: 29199549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury-mediated cross-resistance to tellurite in Pseudomonas spp. isolated from the Chilean Antarctic territory.
    Rodríguez-Rojas F; Díaz-Vásquez W; Undabarrena A; Muñoz-Díaz P; Arenas F; Vásquez C
    Metallomics; 2016 Jan; 8(1):108-17. PubMed ID: 26560799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli.
    Castro ME; Molina RC; Díaz WA; Pradenas GA; Vásquez CC
    Biochem Biophys Res Commun; 2009 Feb; 380(1):148-52. PubMed ID: 19168030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme Environments and High-Level Bacterial Tellurite Resistance.
    Maltman C; Yurkov V
    Microorganisms; 2019 Nov; 7(12):. PubMed ID: 31766694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: a model for the mechanism of resistance.
    Lloyd-Jones G; Osborn AM; Ritchie DA; Strike P; Hobman JL; Brown NL; Rouch DA
    FEMS Microbiol Lett; 1994 May; 118(1-2):113-9. PubMed ID: 8013866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization of the genus Erythromicrobium: description of "Erythromicrobium sibiricum" as Sandaracinobacter sibiricus gen. nov., sp. nov., and of "Erythromicrobium ursincola" as Erythromonas ursincola gen. nov., sp. nov.
    Yurkov V; Stackebrandt E; Buss O; Vermeglio A; Gorlenko V; Beatty JT
    Int J Syst Bacteriol; 1997 Oct; 47(4):1172-8. PubMed ID: 9336925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a Novel Gene Conferring Tellurite Tolerance Through Tellurite Reduction to Escherichia coli Transformant in Marine Sediment Metagenomic Library.
    Munar MP; Takahashi H; Okamura Y
    Mar Biotechnol (NY); 2019 Dec; 21(6):762-772. PubMed ID: 31637558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system.
    Borghese R; Marchetti D; Zannoni D
    Arch Microbiol; 2008 Feb; 189(2):93-100. PubMed ID: 17713758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.