These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 16535461)
1. Physiologic Mechanisms Involved in Accumulation of 3-Hydroxypropionaldehyde during Fermentation of Glycerol by Enterobacter agglomerans. Barbirato F; Soucaille P; Bories A Appl Environ Microbiol; 1996 Dec; 62(12):4405-9. PubMed ID: 16535461 [TBL] [Abstract][Full Text] [Related]
2. Uncoupled glycerol distribution as the origin of the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by enterobacter agglomerans CNCM 1210. Barbirato F; Soucaille P; Camarasa C; Bories A Biotechnol Bioeng; 1998 Apr; 58(2-3):303-5. PubMed ID: 10191406 [TBL] [Abstract][Full Text] [Related]
3. Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Barbirato F; Bories A Res Microbiol; 1997; 148(6):475-84. PubMed ID: 9765825 [TBL] [Abstract][Full Text] [Related]
4. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Hao J; Lin R; Zheng Z; Sun Y; Liu D J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1615-24. PubMed ID: 18685876 [TBL] [Abstract][Full Text] [Related]
6. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Barbirato F; Grivet JP; Soucaille P; Bories A Appl Environ Microbiol; 1996 Apr; 62(4):1448-51. PubMed ID: 8919810 [TBL] [Abstract][Full Text] [Related]
7. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M Microb Cell Fact; 2016 Jan; 15():23. PubMed ID: 26822953 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Barbirato F; Larguier A; Conte T; Astruc S; Bories A Arch Microbiol; 1997 Aug; 168(2):160-3. PubMed ID: 9238108 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Bouvet OM; Lenormand P; Carlier JP; Grimont PA Res Microbiol; 1994 Feb; 145(2):129-39. PubMed ID: 8090993 [TBL] [Abstract][Full Text] [Related]
10. Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine. Pasteris SE; Strasser de Saad AM J Agric Food Chem; 2009 May; 57(9):3853-8. PubMed ID: 19323470 [TBL] [Abstract][Full Text] [Related]
11. Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. Bauer R; du Toit M; Kossmann J Int J Food Microbiol; 2010 Jan; 137(1):28-31. PubMed ID: 19897270 [TBL] [Abstract][Full Text] [Related]
12. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Ahrens K; Menzel K; Zeng A; Deckwer W Biotechnol Bioeng; 1998 Sep; 59(5):544-52. PubMed ID: 10099370 [TBL] [Abstract][Full Text] [Related]
13. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. Forage RG; Foster MA J Bacteriol; 1982 Feb; 149(2):413-9. PubMed ID: 7035429 [TBL] [Abstract][Full Text] [Related]
14. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Lüthi-Peng Q; Dileme FB; Puhan Z Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):289-96. PubMed ID: 12111160 [TBL] [Abstract][Full Text] [Related]
15. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde. Slininger PJ; Bothast RJ Appl Environ Microbiol; 1985 Dec; 50(6):1444-50. PubMed ID: 3911907 [TBL] [Abstract][Full Text] [Related]
16. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. Saint-Amans S; Girbal L; Andrade J; Ahrens K; Soucaille P J Bacteriol; 2001 Mar; 183(5):1748-54. PubMed ID: 11160107 [TBL] [Abstract][Full Text] [Related]
17. Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose. Abbad-Andaloussi S; Durr C; Raval G; Petitdemange H Microbiology (Reading); 1996 May; 142(5):1149-1158. PubMed ID: 33725787 [TBL] [Abstract][Full Text] [Related]
18. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. Veiga da Cunha M; Foster MA J Bacteriol; 1992 Feb; 174(3):1013-9. PubMed ID: 1732191 [TBL] [Abstract][Full Text] [Related]
19. Glycerol and environmental factors: effects on 1,3-propanediol production and NAD(+) regeneration in Lactobacillus panis PM1. Kang TS; Korber DR; Tanaka T J Appl Microbiol; 2013 Oct; 115(4):1003-11. PubMed ID: 23795775 [TBL] [Abstract][Full Text] [Related]
20. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Zhuge B; Zhang C; Fang H; Zhuge J; Permaul K Appl Microbiol Biotechnol; 2010 Aug; 87(6):2177-84. PubMed ID: 20499228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]