These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16535467)

  • 1. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine Wetland.
    King GM
    Appl Environ Microbiol; 1996 Dec; 62(12):4548-55. PubMed ID: 16535467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes.
    Calhoun A; King GM
    Appl Environ Microbiol; 1997 Aug; 63(8):3051-8. PubMed ID: 16535666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and rate of methane oxidation in sediments of the Florida everglades.
    King GM; Roslev P; Skovgaard H
    Appl Environ Microbiol; 1990 Sep; 56(9):2902-11. PubMed ID: 16348299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions.
    He S; Malfatti SA; McFarland JW; Anderson FE; Pati A; Huntemann M; Tremblay J; Glavina del Rio T; Waldrop MP; Windham-Myers L; Tringe SG
    mBio; 2015 May; 6(3):e00066-15. PubMed ID: 25991679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attributes of atmospheric carbon monoxide oxidation by Maine forest soils.
    King GM
    Appl Environ Microbiol; 1999 Dec; 65(12):5257-64. PubMed ID: 10583974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Root-Associated Methanotrophs from Three Freshwater Macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia.
    Calhoun A; King GM
    Appl Environ Microbiol; 1998 Mar; 64(3):1099-105. PubMed ID: 16349515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland.
    Girkin NT; Vane CH; Cooper HV; Moss-Hayes V; Craigon J; Turner BL; Ostle N; Sjögersten S
    Biogeochemistry; 2019; 142(2):231-245. PubMed ID: 30872875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation.
    King GM
    Appl Environ Microbiol; 1994 Sep; 60(9):3220-7. PubMed ID: 7524441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation.
    Oremland RS; Culbertson CW
    Appl Environ Microbiol; 1992 Sep; 58(9):2983-92. PubMed ID: 16348771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Members of the Genus
    Smith GJ; Angle JC; Solden LM; Borton MA; Morin TH; Daly RA; Johnston MD; Stefanik KC; Wolfe R; Gil B; Wrighton KC
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of macrophyte functional group richness on emergent freshwater wetland functions.
    Bouchard V; Frey SD; Gilbert JM; Reed SE
    Ecology; 2007 Nov; 88(11):2903-14. PubMed ID: 18051659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat.
    Horn MA; Matthies C; Küsel K; Schramm A; Drake HL
    Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].
    Berestovskaia IuIu; Rusanov II; Vasil'eva LV; Pimenov NV
    Mikrobiologiia; 2005; 74(2):261-70. PubMed ID: 15938404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes.
    Lambrecht N; Katsev S; Wittkop C; Hall SJ; Sheik CS; Picard A; Fakhraee M; Swanner ED
    Geobiology; 2020 Jan; 18(1):54-69. PubMed ID: 31592570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.
    Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.
    Turetsky MR; Kotowska A; Bubier J; Dise NB; Crill P; Hornibrook ER; Minkkinen K; Moore TR; Myers-Smith IH; Nykänen H; Olefeldt D; Rinne J; Saarnio S; Shurpali N; Tuittila ES; Waddington JM; White JR; Wickland KP; Wilmking M
    Glob Chang Biol; 2014 Jul; 20(7):2183-97. PubMed ID: 24777536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.
    Schroth MH; Eugster W; Gómez KE; Gonzalez-Gil G; Niklaus PA; Oester P
    Waste Manag; 2012 May; 32(5):879-89. PubMed ID: 22143049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil properties and sediment accretion modulate methane fluxes from restored wetlands.
    Chamberlain SD; Anthony TL; Silver WL; Eichelmann E; Hemes KS; Oikawa PY; Sturtevant C; Szutu DJ; Verfaillie JG; Baldocchi DD
    Glob Chang Biol; 2018 Sep; 24(9):4107-4121. PubMed ID: 29575340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difluoromethane, a new and improved inhibitor of methanotrophy.
    Miller LG; Sasson C; Oremland RS
    Appl Environ Microbiol; 1998 Nov; 64(11):4357-62. PubMed ID: 9797290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.