These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16535493)

  • 1. Enumeration of acetogens by a colorimetric most-probable-number assay.
    Harriott OT; Frazer AC
    Appl Environ Microbiol; 1997 Jan; 63(1):296-300. PubMed ID: 16535493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and Anaerobic Catabolism of Vanillic Acid and Some Other Methoxy-Aromatic Compounds by Pseudomonas sp. Strain PN-1.
    Taylor BF
    Appl Environ Microbiol; 1983 Dec; 46(6):1286-92. PubMed ID: 16346441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity.
    Daniel SL; Keith ES; Yang H; Lin YS; Drake HL
    Biochem Biophys Res Commun; 1991 Oct; 180(1):416-22. PubMed ID: 1930235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of One-Carbon Compounds by the Ruminal Acetogen Syntrophococcus sucromutans.
    Doré J; Bryant MP
    Appl Environ Microbiol; 1990 Apr; 56(4):984-9. PubMed ID: 16348178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum.
    el Kasmi A; Rajasekharan S; Ragsdale SW
    Biochemistry; 1994 Sep; 33(37):11217-24. PubMed ID: 7727373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Kraft lignin demethylation and fungal O-demethylases like vanillate-O-demethylase and syringate O-demethylase catalyzed catechol-Fe
    Venkatesagowda B
    J Microbiol Methods; 2018 Sep; 152():126-134. PubMed ID: 30076868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil.
    Kato S; Chino K; Kamimura N; Masai E; Yumoto I; Kamagata Y
    Sci Rep; 2015 Sep; 5():14295. PubMed ID: 26399549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic c(1) metabolism of the o-methyl-C-labeled substituent of vanillate.
    Frazer AC; Young LY
    Appl Environ Microbiol; 1986 Jan; 51(1):84-7. PubMed ID: 16346978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and substrate range of Streptomyces vanillate demethylase.
    Nishimura M; Nishimura Y; Abe C; Kohhata M
    Biol Pharm Bull; 2014; 37(9):1564-8. PubMed ID: 25008238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ether cleaving methyltransferases of the strict anaerobe Acetobacterium dehalogenans: controlling the substrate spectrum by genetic engineering of the N-terminus.
    Kreher S; Studenik S; Diekert G
    Mol Microbiol; 2010 Oct; 78(1):230-7. PubMed ID: 20923421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Phylogenetically Divergent Vanillate O-Demethylase from
    Donoso RA; Corbinaud R; Gárate-Castro C; Galaz S; Pérez-Pantoja D
    Microorganisms; 2022 Dec; 11(1):. PubMed ID: 36677370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum.
    Wu ZR; Daniel SL; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5747-50. PubMed ID: 3192514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community-level analysis: key genes of CO2-reductive acetogenesis.
    Lovell CR; Leaphart AB
    Methods Enzymol; 2005; 397():454-69. PubMed ID: 16260309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.
    Wrenn BA; Venosa AD
    Can J Microbiol; 1996 Mar; 42(3):252-8. PubMed ID: 8868232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?
    Drake HL; Daniel SL; Küsel K; Matthies C; Kuhner C; Braus-Stromeyer S
    Biofactors; 1997; 6(1):13-24. PubMed ID: 9233536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H(2)-CO(2)-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium.
    Liu S; Suflita JM
    Appl Environ Microbiol; 1993 May; 59(5):1325-31. PubMed ID: 16348928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.
    Küsel K; Dorsch T; Acker G; Stackebrandt E; Drake HL
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():537-546. PubMed ID: 10758858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol metabolism in the acetogenic bacterium Acetobacterium woodii.
    Kremp F; Poehlein A; Daniel R; Müller V
    Environ Microbiol; 2018 Dec; 20(12):4369-4384. PubMed ID: 30003650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.