These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 16535506)
21. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats. Houghton J; Fike D; Druschel G; Orphan V; Hoehler TM; Des Marais DJ Geobiology; 2014 Nov; 12(6):557-74. PubMed ID: 25312537 [TBL] [Abstract][Full Text] [Related]
22. Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. Stolz JF Biosystems; 1990; 23(4):345-57. PubMed ID: 2108737 [TBL] [Abstract][Full Text] [Related]
23. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
24. Two-dimensional mapping of photopigment distribution and activity of Chloroflexus-like bacteria in a hypersaline microbial mat. Bachar A; Polerecky L; Fischer JP; Vamvakopoulos K; de Beer D; Jonkers HM FEMS Microbiol Ecol; 2008 Sep; 65(3):434-48. PubMed ID: 18616583 [TBL] [Abstract][Full Text] [Related]
25. Contemporaneous N(2) Fixation and Oxygenic Photosynthesis in the Nonheterocystous Mat-Forming Cyanobacterium Lyngbya aestuarii. Paerl HW; Prufert LE; Ambrose WW Appl Environ Microbiol; 1991 Nov; 57(11):3086-92. PubMed ID: 16348576 [TBL] [Abstract][Full Text] [Related]
26. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)]. Kalashnikov AM; Gaĭsin VA; Sukhacheva MV; Namsaraeva BB; Panteleeva AN; Nuianzina-Boldareva EN; Kuznetsov BB; Gorlenko VM Mikrobiologiia; 2014; 83(4):484-99. PubMed ID: 25844460 [TBL] [Abstract][Full Text] [Related]
27. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Roeselers G; Norris TB; Castenholz RW; Rysgaard S; Glud RN; Kühl M; Muyzer G Environ Microbiol; 2007 Jan; 9(1):26-38. PubMed ID: 17227409 [TBL] [Abstract][Full Text] [Related]
28. Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment. Piwosz K; Vrdoljak A; Frenken T; González-Olalla JM; Šantić D; McKay RM; Spilling K; Guttman L; Znachor P; Mujakić I; Fecskeová LK; Zoccarato L; Hanusová M; Pessina A; Reich T; Grossart HP; Koblížek M mSphere; 2020 Jul; 5(4):. PubMed ID: 32611696 [TBL] [Abstract][Full Text] [Related]
29. [Biogeochemical processes in the algal-bacterial mats of the Urinskii alkaline hot spring]. Brianskaia AV; Namsaraev ZB; Kalashnikova OM; Barkhutova DD; Namsaraev BB; Gorlenko VM Mikrobiologiia; 2006; 75(5):702-12. PubMed ID: 17091594 [TBL] [Abstract][Full Text] [Related]
30. Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat. Jørgensen BB; Cohen Y; Revsbech NP Appl Environ Microbiol; 1986 Feb; 51(2):408-17. PubMed ID: 16346997 [TBL] [Abstract][Full Text] [Related]
31. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Ehrenreich A; Widdel F Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087 [TBL] [Abstract][Full Text] [Related]
32. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106 [TBL] [Abstract][Full Text] [Related]
33. Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs. Hamilton TL; Bennett AC; Murugapiran SK; Havig JR mSystems; 2019 Nov; 4(6):. PubMed ID: 31690593 [TBL] [Abstract][Full Text] [Related]
34. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Martinez JN; Nishihara A; Lichtenberg M; Trampe E; Kawai S; Tank M; Kühl M; Hanada S; Thiel V Microbes Environ; 2019 Dec; 34(4):374-387. PubMed ID: 31685759 [TBL] [Abstract][Full Text] [Related]
35. Genetic variance in the composition of two functional groups (diazotrophs and cyanobacteria) from a hypersaline microbial mat. Yannarell AC; Steppe TF; Paerl HW Appl Environ Microbiol; 2006 Feb; 72(2):1207-17. PubMed ID: 16461668 [TBL] [Abstract][Full Text] [Related]
36. Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Oren A; Padan E; Avron M Proc Natl Acad Sci U S A; 1977 May; 74(5):2152-6. PubMed ID: 16592398 [TBL] [Abstract][Full Text] [Related]
37. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. Bühring SI; Sievert SM; Jonkers HM; Ertefai T; Elshahed MS; Krumholz LR; Hinrichs KU Geobiology; 2011 Mar; 9(2):166-79. PubMed ID: 21244620 [TBL] [Abstract][Full Text] [Related]
38. Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat. Mazière C; Bodo M; Perdrau MA; Cravo-Laureau C; Duran R; Dupuy C; Hubas C Sci Total Environ; 2022 Jan; 802():149787. PubMed ID: 34464796 [TBL] [Abstract][Full Text] [Related]
39. Effect of light wavelength on hot spring microbial mat biodiversity. Nishida A; Thiel V; Nakagawa M; Ayukawa S; Yamamura M PLoS One; 2018; 13(1):e0191650. PubMed ID: 29381713 [TBL] [Abstract][Full Text] [Related]
40. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia). Namsaraev Z; Samylina O; Sukhacheva M; Borisenko G; Sorokin DY; Tourova T Extremophiles; 2018 Jul; 22(4):651-663. PubMed ID: 29663079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]