These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16535522)

  • 1. Supply-Side Analysis of Growth of Bacillus subtilis on Glucose-Citrate Medium: Feasible Network Alternatives and Yield Optimality.
    Lee J; Goel A; Ataai MM; Domach MM
    Appl Environ Microbiol; 1997 Feb; 63(2):710-8. PubMed ID: 16535522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic fluxes, pools, and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux.
    Goel A; Lee J; Domach MM; Ataai MM
    Biotechnol Bioeng; 1999 Jul; 64(2):129-34. PubMed ID: 10397848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressed acid formation by cofeeding of glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site.
    Goel A; Lee J; Domach MM; Ataai MM
    Biotechnol Prog; 1995; 11(4):380-5. PubMed ID: 7654309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supply-Side Analysis of Growth of Bacillus subtilis on Glucose-Citrate Medium: Feasible Network Alternatives and Yield Optimality.
    Lee J; Goel A; Ataai MM; Domach MM
    Appl Environ Microbiol; 1997 May; 63(5):2109. PubMed ID: 16535622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C NMR evidence for pyruvate kinase flux attenuation underlying suppressed acid formation in Bacillus subtilis.
    Phalakornkule C; Fry B; Zhu T; Kopesel R; Ataai MM; Domach MM
    Biotechnol Prog; 2000; 16(2):169-75. PubMed ID: 10753441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.
    Cheng J; Zhuang W; Li NN; Tang CL; Ying HJ
    Lett Appl Microbiol; 2017 Jan; 64(1):73-78. PubMed ID: 27739585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis.
    Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L
    Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid.
    Sauer U; Cameron DC; Bailey JE
    Biotechnol Bioeng; 1998 Jul; 59(2):227-38. PubMed ID: 10099333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propionate as the preferred carbon source to produce 3-indoleacetic acid in
    Castillo Alfonso F; Vigueras-Ramírez G; Rosales-Colunga LM; Del Monte-Martínez A; Olivares Hernández R
    Mol Omics; 2021 Aug; 17(4):554-564. PubMed ID: 33972977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase.
    Çalik P; Özdamar TH
    Biochem Eng J; 2001 Jul; 8(1):61-81. PubMed ID: 11356372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue.
    Saggerson ED; Greenbaum AL
    Biochem J; 1970 Sep; 119(2):193-219. PubMed ID: 4395181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.
    Christiansen T; Christensen B; Nielsen J
    Metab Eng; 2002 Apr; 4(2):159-69. PubMed ID: 12009795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
    Dauner M; Sonderegger M; Hochuli M; Szyperski T; Wüthrich K; Hohmann HP; Sauer U; Bailey JE
    Appl Environ Microbiol; 2002 Apr; 68(4):1760-71. PubMed ID: 11916694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle.
    Lee SH; Davis EJ
    J Biol Chem; 1979 Jan; 254(2):420-30. PubMed ID: 762069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the topological features of optimal metabolic pathway regimes.
    See SM; Dean JP; Dervakos G
    Appl Biochem Biotechnol; 1996 Sep; 60(3):251-301. PubMed ID: 8933718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.