These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16535562)

  • 1. Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa).
    Bosse U; Frenzel P
    Appl Environ Microbiol; 1997 Apr; 63(4):1199-207. PubMed ID: 16535562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.
    Kightley D; Nedwell DB; Cooper M
    Appl Environ Microbiol; 1995 Feb; 61(2):592-601. PubMed ID: 16534930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol.
    Dunfield P; Knowles R
    Appl Environ Microbiol; 1995 Aug; 61(8):3129-35. PubMed ID: 16535109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation and assimilation of atmospheric methane by soil methane oxidizers.
    Roslev P; Iversen N; Henriksen K
    Appl Environ Microbiol; 1997 Mar; 63(3):874-80. PubMed ID: 16535554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate-reducing bacteria in rice field soil and on rice roots.
    Wind T; Stubner S; Conrad R
    Syst Appl Microbiol; 1999 May; 22(2):269-79. PubMed ID: 10390878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential inhibition by allylsulfide of nitrification and methane oxidation in freshwater sediment.
    Roy R; Knowles R
    Appl Environ Microbiol; 1995 Dec; 61(12):4278-83. PubMed ID: 16535183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle.
    Raab TK; Lipson DA; Monson RK
    Oecologia; 1996 Nov; 108(3):488-494. PubMed ID: 28307865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.
    Stubner S; Wind T; Conrad R
    Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils.
    Yang Y; Shan J; Zhang J; Zhang X; Xie S; Liu Y
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10197-209. PubMed ID: 25030456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of CH(4) and CO(2) production originating from rice straw, soil and root organic carbon in rice microcosms.
    Yuan Q; Pump J; Conrad R
    PLoS One; 2012; 7(11):e49073. PubMed ID: 23162678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.
    Shrestha M; Abraham WR; Shrestha PM; Noll M; Conrad R
    Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of soil type and plant age on the population size of rhizospheric methanotrophs and their activities in tropical rice soils.
    Vishwakarma P; Dubey SK
    J Basic Microbiol; 2007 Aug; 47(4):351-7. PubMed ID: 17647202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil.
    Eller G; Krüger M; Frenzel P
    FEMS Microbiol Ecol; 2005 Jan; 51(2):279-91. PubMed ID: 16329876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.).
    Wei T; Liu X; Dong M; Lv X; Hua L; Jia H; Ren X; Yu S; Guo J; Li Y
    J Environ Manage; 2021 Jan; 278(Pt 2):111533. PubMed ID: 33157466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of hydrogen in landfill fermentations.
    Mormile MR; Gurijala KR; Robinson JA; McInerney MJ; Suflita JM
    Appl Environ Microbiol; 1996 May; 62(5):1583-8. PubMed ID: 16535310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Synthesis and Activity of Ammonia Monooxygenase in Nitrosomonas europaea by Altering pH To Affect NH(inf3) Availability.
    Stein LY; Arp DJ; Hyman MR
    Appl Environ Microbiol; 1997 Nov; 63(11):4588-92. PubMed ID: 16535741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of methanotrophic communities in a landfill-cover soil.
    Henneberger R; Lüke C; Mosberger L; Schroth MH
    FEMS Microbiol Ecol; 2012 Jul; 81(1):52-65. PubMed ID: 22172054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of rice plant roots on the reducing conditions in flooded rice soils.
    Doran G; Eberbach P; Helliwell S
    Chemosphere; 2006 Jun; 63(11):1892-902. PubMed ID: 16330066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil.
    Henneberger R; Chiri E; Blees J; Niemann H; Lehmann MF; Schroth MH
    FEMS Microbiol Ecol; 2013 Feb; 83(2):392-401. PubMed ID: 22928887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.
    Huang B; Yu K; Gambrell RP
    Chemosphere; 2009 Jan; 74(4):481-6. PubMed ID: 19027141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.