These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16535570)

  • 1. Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant.
    Espejo RT; Romero J
    Appl Environ Microbiol; 1997 Apr; 63(4):1344-8. PubMed ID: 16535570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemolithotrophic bacteria in copper ores leached at high sulfuric Acid concentration.
    Vasquez M; Espejo RT
    Appl Environ Microbiol; 1997 Jan; 63(1):332-4. PubMed ID: 16535497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant.
    Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT
    Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation.
    Pizarro J; Jedlicki E; Orellana O; Romero J; Espejo RT
    Appl Environ Microbiol; 1996 Apr; 62(4):1323-8. PubMed ID: 8919792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: I. Shake flask studies.
    Lizama HM; Suzuki I
    Biotechnol Bioeng; 1988 Jun; 32(1):110-6. PubMed ID: 18584725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of bacteria in acid mine environments by reverse sample genome probing.
    Léveillé SA; Leduc LG; Ferroni GD; Telang AJ; Voordouw G
    Can J Microbiol; 2001 May; 47(5):431-42. PubMed ID: 11400734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.
    Romo E; Weinacker DF; Zepeda AB; Figueroa CA; Chavez-Crooker P; Farias JG
    Braz J Microbiol; 2013; 44(2):523-8. PubMed ID: 24294251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments.
    Goebel BM; Stackebrandt E
    Appl Environ Microbiol; 1994 May; 60(5):1614-21. PubMed ID: 7517131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-comparison of leaching strains isolated from two different regions: Chambishi and Dexing copper mines.
    Ngom B; Liang Y; Liu X
    Biomed Res Int; 2014; 2014():787034. PubMed ID: 25478575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Leptospirillum ferrooxidans for Leaching.
    Sand W; Rohde K; Sobotke B; Zenneck C
    Appl Environ Microbiol; 1992 Jan; 58(1):85-92. PubMed ID: 16348642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Column Bioleaching of Fluoride-Containing Secondary Copper Sulfide Ores: Experiments With
    Rodrigues MLM; Santos GHA; Leôncio HC; Leão VA
    Front Bioeng Biotechnol; 2018; 6():183. PubMed ID: 30834244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching.
    Sajjad W; Zheng G; Ma X; Xu W; Ali B; Rafiq M; Zada S; Irfan M; Zeman J
    Sci Total Environ; 2020 Mar; 709():136136. PubMed ID: 31884267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore.
    Zhou S; Liao X; Li S; Fang X; Guan Z; Ye M; Sun S
    J Environ Manage; 2022 Feb; 303():114192. PubMed ID: 34861501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater.
    Chen W; Yin S; Wu A; Wang L; Chen X
    Bioresour Technol; 2020 Feb; 297():122453. PubMed ID: 31787510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans.
    Konishi Y; Kubo H; Asai S
    Biotechnol Bioeng; 1992 Jan; 39(1):66-74. PubMed ID: 18600888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans.
    Karavaiko GI; Turova TP; Kondrat'eva TF; Lysenko AM; Kolganova TV; Ageeva SN; Muntyan LN; Pivovarova TA
    Int J Syst Evol Microbiol; 2003 Jan; 53(Pt 1):113-119. PubMed ID: 12656161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.