These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16535651)

  • 1. Composition and Biophysical Properties of Lipids in Xenorhabdus nematophilus and Photorhabdus luminescens, Symbiotic Bacteria Associated with Entomopathogenic Nematodes.
    Fodor E; Szallas E; Kiss Z; Fodor A; Horvath LI; Chitwood DJ; Farkas T
    Appl Environ Microbiol; 1997 Jul; 63(7):2826-31. PubMed ID: 16535651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Variation in Xenorhabdus nematophilus and Photorhabdus luminescens: Differences in Respiratory Activity and Membrane Energization.
    Smigielski AJ; Akhurst RJ; Boemare NE
    Appl Environ Microbiol; 1994 Jan; 60(1):120-5. PubMed ID: 16349145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during in vitro culture.
    Wang Y; Bilgrami AL; Shapiro-Ilan D; Gaugler R
    J Ind Microbiol Biotechnol; 2007 Jan; 34(1):73-81. PubMed ID: 16941119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin.
    Godjo A; Afouda L; Baimey H; Decraemer W; Willems A
    Arch Microbiol; 2018 May; 200(4):589-601. PubMed ID: 29270664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth-mediated variations in fatty acids of Xenorhabdus sp.
    Abu Hatab MA; Gaugler R
    J Appl Microbiol; 1997 Mar; 82(3):351-8. PubMed ID: 12455899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov.
    Tailliez P; Laroui C; Ginibre N; Paule A; Pagès S; Boemare N
    Int J Syst Evol Microbiol; 2010 Aug; 60(Pt 8):1921-1937. PubMed ID: 19783607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes.
    Chen G; Zhang Y; Li J; Dunphy GB; Punja ZK; Webster JM
    J Invertebr Pathol; 1996 Sep; 68(2):101-8. PubMed ID: 8858906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and entomotoxic properties of the Xenorhabdus nematophilus F1 lecithinase.
    Thaler JO; Duvic B; Givaudan A; Boemare N
    Appl Environ Microbiol; 1998 Jul; 64(7):2367-73. PubMed ID: 9647801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens.
    Aymeric JL; Givaudan A; Duvic B
    Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp.
    Boemare NE; Boyer-Giglio MH; Thaler JO; Akhurst RJ; Brehelin M
    Appl Environ Microbiol; 1992 Sep; 58(9):3032-7. PubMed ID: 1444417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).
    Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O
    J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical Characterization and Agglutinating Properties of Xenorhabdus nematophilus F1 Fimbriae.
    Moureaux N; Karjalainen T; Givaudan A; Bourlioux P; Boemare N
    Appl Environ Microbiol; 1995 Jul; 61(7):2707-12. PubMed ID: 16535079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial insecticidal toxins.
    Chattopadhyay A; Bhatnagar NB; Bhatnagar R
    Crit Rev Microbiol; 2004; 30(1):33-54. PubMed ID: 15116762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyclonal Antisera To Distinguish Strains and Form Variants of Photorhabdus (Xenorhabdus) luminescens.
    Gerritsen L; van der Wolf JM; van Vuurde J; Ehlers R; Krasomil-Osterfel KC; Smits PH
    Appl Environ Microbiol; 1995 Jan; 61(1):284-9. PubMed ID: 16534911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes.
    Gulcu B; Hazir S; Kaya HK
    J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria.
    Muangpat P; Suwannaroj M; Yimthin T; Fukruksa C; Sitthisak S; Chantratita N; Vitta A; Thanwisai A
    PLoS One; 2020; 15(6):e0234129. PubMed ID: 32502188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new broad-spectrum protease inhibitor from the entomopathogenic bacterium Photorhabdus luminescens.
    Wee KE; Yonan CR; Chang FN
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3141-3147. PubMed ID: 11101672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens.
    El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH
    Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swarming and Swimming Changes Concomitant with Phase Variation in Xenorhabdus nematophilus.
    Givaudan A; Baghdiguian S; Lanois A; Boemare N
    Appl Environ Microbiol; 1995 Apr; 61(4):1408-13. PubMed ID: 16534993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.