BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1653610)

  • 21. N-(3,5-dihydroxybenzoyl)-6-hydroxytryptamine as a novel human tyrosinase inhibitor that inactivates the enzyme in cooperation with l-3,4-dihydroxyphenylalanine.
    Yamazaki Y; Kawano Y
    Chem Pharm Bull (Tokyo); 2010 Nov; 58(11):1536-40. PubMed ID: 21048351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation mechanism of tyrosinase in mouse melanoma.
    Tomita Y; Seiji M
    J Dermatol; 1977 Dec; 4(6):245-9. PubMed ID: 15461355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mushroom tyrosinase: catalase activity, inhibition, and suicide inactivation.
    García-Molina F; Hiner AN; Fenoll LG; Rodríguez-Lopez JN; García-Ruiz PA; García-Cánovas F; Tudela J
    J Agric Food Chem; 2005 May; 53(9):3702-9. PubMed ID: 15853423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of mushroom tyrosinase on anisaldehyde.
    Ha TJ; Tamura S; Kubo I
    J Agric Food Chem; 2005 Sep; 53(18):7024-8. PubMed ID: 16131106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indirect oxidation of 6-tetrahydrobiopterin by tyrosinase.
    Jung JH; Choi SW; Han S
    Biochem Biophys Res Commun; 2004 Feb; 314(4):937-42. PubMed ID: 14751222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study on the in vitro interaction between tyrosinase and glutathione S-transferase.
    Miranda M; di Ilio C; Bonfigli A; Arcadi A; Pitari G; Dupre S; Federici G; del Boccio G
    Biochim Biophys Acta; 1987 Jul; 913(3):386-94. PubMed ID: 3109490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of tyrosinase in the genoprotective effect of the edible mushroom, Agaricus bisporus.
    Shi YL; Benzie IF; Buswell JA
    Life Sci; 2002 Feb; 70(14):1595-608. PubMed ID: 11991248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase.
    García-Molina Mo; Muñoz-Muñoz JL; Berna J; Rodríguez-López JN; Varón R; García-Cánovas F
    Biosci Biotechnol Biochem; 2013; 77(12):2383-8. PubMed ID: 24317051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.
    Inamdar S; Joshi S; Bapat V; Jadhav J
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1183-93. PubMed ID: 24146367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor.
    Satooka H; Kubo I
    Bioorg Med Chem; 2012 Jan; 20(2):1090-9. PubMed ID: 22189272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase.
    Ros JR; Rodríguez-López JN; García-Cánovas F
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):309-12. PubMed ID: 8216233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanogenesis inhibition due to NADH.
    Garcia-Molina F; Munoz-Munoz JL; Garcia-Molina M; Garcia-Ruiz PA; Tudela J; García-Cánovas F; Rodriguez-Lopez JN
    Biosci Biotechnol Biochem; 2010; 74(9):1777-87. PubMed ID: 20834177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of tyrosinase by tetrahydropteridines and H2O2.
    Wood JM; Chavan B; Hafeez I; Schallreuter KU
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1412-7. PubMed ID: 15555584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway.
    Jara JR; Aroca P; Solano F; Martinez JH; Lozano JA
    Biochim Biophys Acta; 1988 Nov; 967(2):296-303. PubMed ID: 2903772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dopachrome conversion and dopa oxidase activities in recessive yellow mice. Catalytic activities of extracts from pheomelanic and eumelanic tissues.
    Lamoreux ML
    J Hered; 1986; 77(5):337-40. PubMed ID: 3095419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.
    Cieńska M; Labus K; Lewańczuk M; Koźlecki T; Liesiene J; Bryjak J
    PLoS One; 2016; 11(10):e0164213. PubMed ID: 27711193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.
    Ochiai A; Tanaka S; Imai Y; Yoshida H; Kanaoka T; Tanaka T; Taniguchi M
    J Biosci Bioeng; 2016 Jun; 121(6):607-613. PubMed ID: 26589783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase.
    Schved F; Kahn V
    Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen peroxide as a mediator of dopac-induced effects on melanoma cells.
    Karg E; Rosengren E; Rorsman H
    J Invest Dermatol; 1991 Feb; 96(2):224-7. PubMed ID: 1899444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.