These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1653614)

  • 1. Reactivation of vanadium bromoperoxidase; inhibition by metallofluoric compounds.
    Tromp M; Van TT; Wever R
    Biochim Biophys Acta; 1991 Aug; 1079(1):53-6. PubMed ID: 1653614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology.
    Chabre M
    Trends Biochem Sci; 1990 Jan; 15(1):6-10. PubMed ID: 2180149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the aluminum and beryllium fluoride species which activate transducin. Analysis of the binding and dissociation kinetics.
    Antonny B; Chabre M
    J Biol Chem; 1992 Apr; 267(10):6710-8. PubMed ID: 1551879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel magnesium-dependent mechanism for the activation of transducin by fluoride.
    Antonny B; Bigay J; Chabre M
    FEBS Lett; 1990 Jul; 268(1):277-80. PubMed ID: 2384166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RecA protein-promoted cleavage of LexA repressor in the presence of ADP and structural analogues of inorganic phosphate, the fluoride complexes of aluminum and beryllium.
    Moreau PL; Carlier MF
    J Biol Chem; 1989 Feb; 264(4):2302-6. PubMed ID: 2521626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride and beryllium interact with the (Na + K)-dependent ATPase as analogs of phosphate.
    Robinson JD; Davis RL; Steinberg M
    J Bioenerg Biomembr; 1986 Dec; 18(6):521-31. PubMed ID: 3025194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium.
    Carlier MF; Didry D; Melki R; Chabre M; Pantaloni D
    Biochemistry; 1988 May; 27(10):3555-9. PubMed ID: 3408711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AlF4- reversibly inhibits 'P'-type cation-transport ATPases, possibly by interacting with the phosphate-binding site of the ATPase.
    Missiaen L; Wuytack F; De Smedt H; Vrolix M; Casteels R
    Biochem J; 1988 Aug; 253(3):827-33. PubMed ID: 2845938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the gamma phosphate of GTP.
    Bigay J; Deterre P; Pfister C; Chabre M
    EMBO J; 1987 Oct; 6(10):2907-13. PubMed ID: 2826123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes.
    Werber MM; Peyser YM; Muhlrad A
    Biochemistry; 1992 Aug; 31(31):7190-7. PubMed ID: 1386527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the stable myosin-ADP-aluminum fluoride and myosin-ADP-beryllium fluoride complexes and their analysis using 19F NMR.
    Maruta S; Henry GD; Sykes BD; Ikebe M
    J Biol Chem; 1993 Apr; 268(10):7093-100. PubMed ID: 8463244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibition of ATP-dependent shape change of human erythrocyte ghosts correlates with an inhibition of Mg(2+)-ATPase activity by fluoride and aluminofluoride complexes.
    Morris MB; Monteith G; Roufogalis BD
    J Cell Biochem; 1992 Apr; 48(4):356-66. PubMed ID: 1533644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of vanadium bromoperoxidase from a marine macroalga, Ecklonia stolonifera.
    Hara I; Sakurai T
    J Inorg Biochem; 1998 Oct; 72(1-2):23-8. PubMed ID: 9861726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of phosphate, aluminum fluoride, or beryllium fluoride to F-actin inhibits severing by gelsolin.
    Allen PG; Laham LE; Way M; Janmey PA
    J Biol Chem; 1996 Mar; 271(9):4665-70. PubMed ID: 8617730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlF4- and vanadate stimulate chloride secretion in rabbit colon by a Ca(2+)-dependent mechanism.
    Jung JS; Hwang TH; Jung DK; Kim YK; Lee SH
    Pflugers Arch; 1992 Apr; 420(5-6):515-21. PubMed ID: 1614825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling between phosphoinositide breakdown and early mitogenic events in fibroblasts. Studies with fluoroaluminate, vanadate, and pertussis toxin.
    Paris S; Chambard JC; Pouysségur J
    J Biol Chem; 1987 Feb; 262(5):1977-83. PubMed ID: 3029057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A (17)O NMR study of peroxide binding to the active centre of bromoperoxidase from Ascophyllum nodosum.
    Casný M; Rehder D; Schmidt H; Vilter H; Conte V
    J Inorg Biochem; 2000 May; 80(1-2):157-60. PubMed ID: 10885479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.
    Soedjak HS; Butler A
    Biochemistry; 1990 Aug; 29(34):7974-81. PubMed ID: 2261454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum.
    Hormes J; Kuetgens U; Chauvistre R; Schreiber W; Anders N; Vilter H; Rehder D; Weidemann C
    Biochim Biophys Acta; 1988 Oct; 956(3):293-9. PubMed ID: 3167074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
    ten Brink HB; Schoemaker HE; Wever R
    Eur J Biochem; 2001 Jan; 268(1):132-8. PubMed ID: 11121113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.