BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 1653648)

  • 21. Zinc finger protein Zn72D promotes productive splicing of the maleless transcript.
    Worringer KA; Panning B
    Mol Cell Biol; 2007 Dec; 27(24):8760-9. PubMed ID: 17923683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system.
    Meller VH; Wu KH; Roman G; Kuroda MI; Davis RL
    Cell; 1997 Feb; 88(4):445-57. PubMed ID: 9038336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insights reveal the specific recognition of roX RNA by the dsRNA-binding domains of the RNA helicase MLE and its indispensable role in dosage compensation in Drosophila.
    Lv M; Yao Y; Li F; Xu L; Yang L; Gong Q; Xu YZ; Shi Y; Fan YJ; Tang Y
    Nucleic Acids Res; 2019 Apr; 47(6):3142-3157. PubMed ID: 30649456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of inter- and intramolecular interaction of RNA, DNA, and proteins by MLE.
    Oh H; Parrott AM; Park Y; Lee CG
    Methods Mol Biol; 2010; 587():303-26. PubMed ID: 20225159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype.
    Prabhakaran M; Kelley RL
    BMC Biol; 2010 Jun; 8():80. PubMed ID: 20537125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular cloning of the gene encoding nuclear DNA helicase II. A bovine homologue of human RNA helicase A and Drosophila Mle protein.
    Zhang S; Maacke H; Grosse F
    J Biol Chem; 1995 Jul; 270(27):16422-7. PubMed ID: 7608213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq.
    Straub T; Zabel A; Gilfillan GD; Feller C; Becker PB
    Genome Res; 2013 Mar; 23(3):473-85. PubMed ID: 23233545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis.
    Witt E; Shao Z; Hu C; Krause HM; Zhao L
    PLoS Genet; 2021 Aug; 17(8):e1009728. PubMed ID: 34403408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a novel chromo domain gene in xp22.3 with homology to Drosophila msl-3.
    Prakash SK; Van den Veyver IB; Franco B; Volta M; Ballabio A; Zoghbi HY
    Genomics; 1999 Jul; 59(1):77-84. PubMed ID: 10395802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins.
    Maenner S; Müller M; Fröhlich J; Langer D; Becker PB
    Mol Cell; 2013 Jul; 51(2):174-84. PubMed ID: 23870143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. No evidence for a global male-specific lethal complex-mediated dosage compensation contribution to the demasculinization of the Drosophila melanogaster X chromosome.
    Vensko SP; Stone EA
    PLoS One; 2014; 9(8):e103659. PubMed ID: 25093841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting.
    Morra R; Smith ER; Yokoyama R; Lucchesi JC
    Mol Cell Biol; 2008 Feb; 28(3):958-66. PubMed ID: 18039854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The male-specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males.
    Palmer MJ; Mergner VA; Richman R; Manning JE; Kuroda MI; Lucchesi JC
    Genetics; 1993 Jun; 134(2):545-57. PubMed ID: 8325488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Drosophila Helicase Maleless (MLE) is Implicated in Functions Distinct From its Role in Dosage Compensation.
    Cugusi S; Kallappagoudar S; Ling H; Lucchesi JC
    Mol Cell Proteomics; 2015 Jun; 14(6):1478-88. PubMed ID: 25776889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila.
    Hilfiker A; Hilfiker-Kleiner D; Pannuti A; Lucchesi JC
    EMBO J; 1997 Apr; 16(8):2054-60. PubMed ID: 9155031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila.
    Ilik IA; Quinn JJ; Georgiev P; Tavares-Cadete F; Maticzka D; Toscano S; Wan Y; Spitale RC; Luscombe N; Backofen R; Chang HY; Akhtar A
    Mol Cell; 2013 Jul; 51(2):156-73. PubMed ID: 23870142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes].
    Nikolenko JV; Georgieva SG; Kopytova DV
    Mol Biol (Mosk); 2023; 57(1):10-23. PubMed ID: 36976736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila.
    Rastelli L; Richman R; Kuroda MI
    Mech Dev; 1995 Oct; 53(2):223-33. PubMed ID: 8562424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A functional dosage compensation complex required for male killing in Drosophila.
    Veneti Z; Bentley JK; Koana T; Braig HR; Hurst GD
    Science; 2005 Mar; 307(5714):1461-3. PubMed ID: 15746426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.