BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16536514)

  • 1. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations.
    Kovalenko MV; Kaufmann E; Pachinger D; Roither J; Huber M; Stangl J; Hesser G; Schäffler F; Heiss W
    J Am Chem Soc; 2006 Mar; 128(11):3516-7. PubMed ID: 16536514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.
    Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T
    J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots.
    Pietryga JM; Schaller RD; Werder D; Stewart MH; Klimov VI; Hollingsworth JA
    J Am Chem Soc; 2004 Sep; 126(38):11752-3. PubMed ID: 15382884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.
    Yarema M; Pichler S; Sytnyk M; Seyrkammer R; Lechner RT; Fritz-Popovski G; Jarzab D; Szendrei K; Resel R; Korovyanko O; Loi MA; Paris O; Hesser G; Heiss W
    ACS Nano; 2011 May; 5(5):3758-65. PubMed ID: 21500803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band gap engineering of CdTe nanocrystals through chemical surface modification.
    Akamatsu K; Tsuruoka T; Nawafune H
    J Am Chem Soc; 2005 Feb; 127(6):1634-5. PubMed ID: 15700986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates.
    Goy-López S; Castro E; Taboada P; Mosquera V
    Langmuir; 2008 Nov; 24(22):13186-96. PubMed ID: 18925755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications.
    Rogach AL; Eychmüller A; Hickey SG; Kershaw SV
    Small; 2007 Apr; 3(4):536-57. PubMed ID: 17340666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents.
    Prakash A; Zhu H; Jones CJ; Benoit DN; Ellsworth AZ; Bryant EL; Colvin VL
    ACS Nano; 2009 Aug; 3(8):2139-46. PubMed ID: 19594166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient near-infrared polymer nanocrystal light-emitting diodes.
    Tessler N; Medvedev V; Kazes M; Kan S; Banin U
    Science; 2002 Feb; 295(5559):1506-8. PubMed ID: 11859189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduction pathway in the synthesis of PbSe nanocrystal quantum dots.
    Joo J; Pietryga JM; McGuire JA; Jeon SH; Williams DJ; Wang HL; Klimov VI
    J Am Chem Soc; 2009 Aug; 131(30):10620-8. PubMed ID: 19569687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement.
    Piepenbrock MO; Stirner T; Kelly SM; O'Neill M
    J Am Chem Soc; 2006 May; 128(21):7087-90. PubMed ID: 16719490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection.
    Keuleyan S; Lhuillier E; Guyot-Sionnest P
    J Am Chem Soc; 2011 Oct; 133(41):16422-4. PubMed ID: 21942339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters.
    Izquierdo E; Robin A; Keuleyan S; Lequeux N; Lhuillier E; Ithurria S
    J Am Chem Soc; 2016 Aug; 138(33):10496-501. PubMed ID: 27487074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission.
    Pietryga JM; Werder DJ; Williams DJ; Casson JL; Schaller RD; Klimov VI; Hollingsworth JA
    J Am Chem Soc; 2008 Apr; 130(14):4879-85. PubMed ID: 18341344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media.
    Rakshit S; Vasudevan S
    ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature synthesis of HgTe nanocrystals.
    Li LS; Wang H; Liu Y; Lou S; Wang Y; Du Z
    J Colloid Interface Sci; 2007 Apr; 308(1):254-7. PubMed ID: 17204276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surface modification on the luminescence of colloidal ZnO nanocrystals.
    Norberg NS; Gamelin DR
    J Phys Chem B; 2005 Nov; 109(44):20810-6. PubMed ID: 16853697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochromic nanocrystal quantum dots.
    Wang C; Shim M; Guyot-Sionnest P
    Science; 2001 Mar; 291(5512):2390-2. PubMed ID: 11264530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.