These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16536535)

  • 1. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle Superlattices with Nonequilibrium Crystal Shapes.
    Ye M; Hueckel T; Gatenil PP; Nagao K; Carter WC; Macfarlane RJ
    ACS Nano; 2024 Jun; 18(24):15970-15977. PubMed ID: 38838258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-dependent ordering of gold nanocrystals into large-scale superlattices.
    Gong J; Newman RS; Engel M; Zhao M; Bian F; Glotzer SC; Tang Z
    Nat Commun; 2017 Jan; 8():14038. PubMed ID: 28102198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.
    Gu XW; Ye X; Koshy DM; Vachhani S; Hosemann P; Alivisatos AP
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2836-2841. PubMed ID: 28242704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long live(d) CsPbBr
    Lapointe V; Green PB; Chen AN; Buonsanti R; Majewski MB
    Chem Sci; 2024 Mar; 15(12):4510-4518. PubMed ID: 38516096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlattices assembled through shape-induced directional binding.
    Lu F; Yager KG; Zhang Y; Xin H; Gang O
    Nat Commun; 2015 Apr; 6():6912. PubMed ID: 25903309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins.
    Liljeström V; Mikkilä J; Kostiainen MA
    Nat Commun; 2014 Jul; 5():4445. PubMed ID: 25033911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The significance of multipole interactions for the stability of regular structures composed from charged particles.
    Lindgren EB; Avis H; Miller A; Stamm B; Besley E; Stace AJ
    J Colloid Interface Sci; 2024 Jun; 663():458-466. PubMed ID: 38417297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-assembled superconducting 3D nanoscale architectures.
    Shani L; Michelson AN; Minevich B; Fleger Y; Stern M; Shaulov A; Yeshurun Y; Gang O
    Nat Commun; 2020 Nov; 11(1):5697. PubMed ID: 33173061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes.
    Ahniyaz A; Sakamoto Y; Bergström L
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17570-4. PubMed ID: 17978189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals.
    Toso S; Baranov D; Altamura D; Scattarella F; Dahl J; Wang X; Marras S; Alivisatos AP; Singer A; Giannini C; Manna L
    ACS Nano; 2021 Apr; 15(4):6243-6256. PubMed ID: 33481560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Transformation of High-Architectural Nanocrystal Superlattices upon Solvent Molecule Exposure.
    Nagaoka Y; Schneider J; Jin N; Cai T; Liu Y; Wang Z; Li R; Kim KS; Chen O
    J Am Chem Soc; 2024 May; 146(19):13093-13104. PubMed ID: 38690763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered hierarchical superlattice amplifies coated-CeO
    Gallucci N; Appavou MS; Cowieson N; D'Errico G; Di Girolamo R; Lettieri S; Sica F; Vitiello G; Paduano L
    J Colloid Interface Sci; 2024 Apr; 659():926-935. PubMed ID: 38219311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable synthesis of star-shaped FeCoMnO
    Xia Z; Gao Y; Cai Q; Wang Y; Yang D; Li T; Dong A
    Chem Commun (Camb); 2024 Mar; 60(25):3409-3412. PubMed ID: 38440958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry control of nanorod superlattice driven by a governing force.
    Liang Y; Xie Y; Chen D; Guo C; Hou S; Wen T; Yang F; Deng K; Wu X; Smalyukh II; Liu Q
    Nat Commun; 2017 Nov; 8(1):1410. PubMed ID: 29123101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle Superlattices Driven by Linker-Mediated Covalent Bonding Interaction.
    Lee SJ; Kim J; Dey J; Jin KS; Choi SM
    J Phys Chem Lett; 2024 Jun; 15(25):6691-6698. PubMed ID: 38899919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-optical properties of diluted magnetic PbSe/Pb1-xMnxSe superlattices.
    Geist F; Pascher H; Kriechbaum M; Frank N; Bauer G
    Phys Rev B Condens Matter; 1996 Aug; 54(7):4820-4834. PubMed ID: 9986443
    [No Abstract]   [Full Text] [Related]  

  • 18. Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors.
    Ikonic Z; Srivastava GP; Inkson JC
    Phys Rev B Condens Matter; 1995 Nov; 52(19):14078-14085. PubMed ID: 9980625
    [No Abstract]   [Full Text] [Related]  

  • 19. Growth and magnetic characterization of Mn films and superlattices on Ag(001).
    Jonker BT; Krebs JJ; Prinz GA
    Phys Rev B Condens Matter; 1989 Jan; 39(2):1399-1402. PubMed ID: 9948339
    [No Abstract]   [Full Text] [Related]  

  • 20. Band folding and energy-gap formation in Ag-Au superlattices.
    Miller T; Mueller MA; Chiang T
    Phys Rev B Condens Matter; 1989 Jul; 40(2):1301-1304. PubMed ID: 9991958
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.