BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16536571)

  • 21. A rapid method for the determination of chlorine, phosphorus, and sulfur in flours of grains and legumes using wavelength dispersive x-ray flourescence spectrometry.
    Pérez Ruiz T; Hernández Córdoba M; González R
    J Assoc Off Anal Chem; 1991; 74(4):625-6. PubMed ID: 1917809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.
    Sonnante G; Montemurro C; Morgese A; Sabetta W; Blanco A; Pasqualone A
    J Agric Food Chem; 2009 Nov; 57(21):10199-204. PubMed ID: 19886680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronous front-face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study the effects of cooking time on meat.
    Sahar A; Boubellouta T; Portanguen S; Kondjoyan A; Dufour E
    J Food Sci; 2009; 74(9):E534-9. PubMed ID: 20492116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.
    Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R
    J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin.
    Miquel Becker E; Christensen J; Frederiksen CS; Haugaard VK
    J Dairy Sci; 2003 Aug; 86(8):2508-15. PubMed ID: 12939074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short communication: Suitability of fluorescence spectroscopy for characterization of commercial milk of different composition and origin.
    Ntakatsane MP; Yang XQ; Lin M; Liu XM; Zhou P
    J Dairy Sci; 2011 Nov; 94(11):5375-80. PubMed ID: 22032360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis.
    Nevin A; Cather S; Burnstock A; Anglos D
    Appl Spectrosc; 2008 May; 62(5):481-9. PubMed ID: 18498688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct analysis real-time-high-resolution mass spectrometry for Triticum species authentication.
    Miano B; Righetti L; Piro R; Dall'Asta C; Folloni S; Galaverna G; Suman M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Dec; 35(12):2291-2297. PubMed ID: 30381010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of mild heating and acidification on the molecular structure of milk components as investigated by synchronous front-face fluorescence spectroscopy coupled with parallel factor analysis.
    Boubellouta T; Dufour E
    Appl Spectrosc; 2008 May; 62(5):490-6. PubMed ID: 18498689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Front-surface absorbance spectra of wheat flour: determination of carotenoids.
    Zandomeneghi M; Festa C; Carbonaro L; Galleschi L; Lenzi A; Calucci L
    J Agric Food Chem; 2000 Jun; 48(6):2216-21. PubMed ID: 10888525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential of front face fluorescence associated to PLS regression to predict nutritional parameters in heat treated infant formula models.
    Diez R; Ortiz MC; Sarabia L; Birlouez-Aragon I
    Anal Chim Acta; 2008 Jan; 606(2):151-8. PubMed ID: 18082646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid and sensitive analysis of alkylresorcinols from cereal grains and products using HPLC-Coularray-based electrochemical detection.
    Ross AB; Kochhar S
    J Agric Food Chem; 2009 Jun; 57(12):5187-93. PubMed ID: 19453171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence of cereal flours.
    Zandomeneghi M
    J Agric Food Chem; 1999 Mar; 47(3):878-82. PubMed ID: 10552385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring changes in sponge cakes during aging by front face fluorescence spectroscopy and instrumental techniques.
    Botosoa EP; Chénè C; Karoui R
    J Agric Food Chem; 2013 Mar; 61(11):2687-95. PubMed ID: 23414444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of soft wheat in semolina and durum wheat bread by analysis of DNA microsatellites.
    Pasqualone A; Montemurro C; Grinn-Gofron A; Sonnante G; Blanco A
    J Agric Food Chem; 2007 May; 55(9):3312-8. PubMed ID: 17394336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements.
    Fratianni A; Irano M; Panfili G; Acquistucci R
    J Agric Food Chem; 2005 Apr; 53(7):2373-8. PubMed ID: 15796565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonic study of wheat flour properties.
    García-Álvarez J; Salazar J; Rosell CM
    Ultrasonics; 2011 Feb; 51(2):223-8. PubMed ID: 20875657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study.
    Bilal M; Jaffrezic A; Dudal Y; Le Guillou C; Menasseri S; Walter C
    J Agric Food Chem; 2010 Mar; 58(5):3093-100. PubMed ID: 20151652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of fluorescence spectroscopy and chemometrics in the evaluation of processed cheese during storage.
    Christensen J; Povlsen VT; Sørensen J
    J Dairy Sci; 2003 Apr; 86(4):1101-7. PubMed ID: 12741533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of sulfur fertilization on the amounts of free amino acids in wheat. correlation with baking properties as well as with 3-aminopropionamide and acrylamide generation during baking.
    Granvogl M; Wieser H; Koehler P; Tucher SV; Schieberle P
    J Agric Food Chem; 2007 May; 55(10):4271-7. PubMed ID: 17455956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.