BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 1653702)

  • 1. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5.
    Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F
    Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c.
    Berghuis AM; Guillemette JG; McLendon G; Sherman F; Smith M; Brayer GD
    J Mol Biol; 1994 Feb; 236(3):786-99. PubMed ID: 8114094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position-82 variants of yeast iso-1-cytochrome c.
    Willie A; McLean M; Liu RQ; Hilgen-Willis S; Saunders AJ; Pielak GJ; Sligar SG; Durham B; Millett F
    Biochemistry; 1993 Jul; 32(29):7519-25. PubMed ID: 8393343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5.
    Northrup SH; Thomasson KA; Miller CM; Barker PD; Eltis LD; Guillemette JG; Inglis SC; Mauk AG
    Biochemistry; 1993 Jul; 32(26):6613-23. PubMed ID: 8392365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c.
    Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM
    J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c.
    Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E
    Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry of proteins. Investigations of yeast cytochrome c mutants and their complexes with cytochrome b5.
    Burrows AL; Guo LH; Hill HA; McLendon G; Sherman F
    Eur J Biochem; 1991 Dec; 202(2):543-9. PubMed ID: 1662133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a conserved water molecule in the redox-dependent thermal stability of iso-1-cytochrome c.
    Lett CM; Berghuis AM; Frey HE; Lepock JR; Guillemette JG
    J Biol Chem; 1996 Nov; 271(46):29088-93. PubMed ID: 8910563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5.
    Altuve A; Silchenko S; Lee KH; Kuczera K; Terzyan S; Zhang X; Benson DR; Rivera M
    Biochemistry; 2001 Aug; 40(32):9469-83. PubMed ID: 11583146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polypeptide chain-refolding event occurs in the Gly82 variant of yeast iso-1-cytochrome c.
    Louie GV; Brayer GD
    J Mol Biol; 1989 Nov; 210(2):313-22. PubMed ID: 2557455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation state-dependent conformational changes in cytochrome c.
    Berghuis AM; Brayer GD
    J Mol Biol; 1992 Feb; 223(4):959-76. PubMed ID: 1311391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the bimolecular reduction of ferricytochrome c by ferrocytochrome b5 through mutagenesis and molecular modelling.
    Guillemette JG; Barker PD; Eltis LD; Lo TP; Smith M; Brayer GD; Mauk AG
    Biochimie; 1994; 76(7):592-604. PubMed ID: 7893811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity.
    Rafferty SP; Guillemette JG; Berghuis AM; Smith M; Brayer GD; Mauk AG
    Biochemistry; 1996 Aug; 35(33):10784-92. PubMed ID: 8718869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of yeast iso-1-cytochrome c structural requirements: suppression of Gly6 replacements by an Asn52----Ile replacement.
    Berroteran RW; Hampsey M
    Arch Biochem Biophys; 1991 Jul; 288(1):261-9. PubMed ID: 1654826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of leucine 85 to the structure and function of Saccharomyces cerevisiae iso-1 cytochrome c.
    Parrish JC; Guillemette JG; Wallace CJ
    Biochem Cell Biol; 2001; 79(4):517-24. PubMed ID: 11527221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation.
    Moore GR; Cox MC; Crowe D; Osborne MJ; Rosell FI; Bujons J; Barker PD; Mauk MR; Mauk AG
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):439-49. PubMed ID: 9601073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of Glu44 and Glu56 of cytochrome b5 on the protein structure and interaction with cytochrome c.
    Sun YL; Xie Y; Wang YH; Xiao GT; Huang ZX
    Protein Eng; 1996 Jul; 9(7):555-8. PubMed ID: 8844826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of bovine microsomal cytochrome b5 in Escherichia coli and a study of the solution structure and stability of variant proteins.
    Hewson R; Newbold RJ; Whitford D
    Protein Eng; 1993 Nov; 6(8):953-64. PubMed ID: 8309945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cytochrome c variant resistant to heme degradation by hydrogen peroxide.
    Villegas JA; Mauk AG; Vazquez-Duhalt R
    Chem Biol; 2000 Apr; 7(4):237-44. PubMed ID: 10780923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c.
    Seetharaman R; White SP; Rivera M
    Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.