These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 1653702)
1. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5. Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702 [TBL] [Abstract][Full Text] [Related]
2. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c. Berghuis AM; Guillemette JG; McLendon G; Sherman F; Smith M; Brayer GD J Mol Biol; 1994 Feb; 236(3):786-99. PubMed ID: 8114094 [TBL] [Abstract][Full Text] [Related]
3. Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position-82 variants of yeast iso-1-cytochrome c. Willie A; McLean M; Liu RQ; Hilgen-Willis S; Saunders AJ; Pielak GJ; Sligar SG; Durham B; Millett F Biochemistry; 1993 Jul; 32(29):7519-25. PubMed ID: 8393343 [TBL] [Abstract][Full Text] [Related]
4. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Northrup SH; Thomasson KA; Miller CM; Barker PD; Eltis LD; Guillemette JG; Inglis SC; Mauk AG Biochemistry; 1993 Jul; 32(26):6613-23. PubMed ID: 8392365 [TBL] [Abstract][Full Text] [Related]
5. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c. Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411 [TBL] [Abstract][Full Text] [Related]
6. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c. Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315 [TBL] [Abstract][Full Text] [Related]
7. Direct electrochemistry of proteins. Investigations of yeast cytochrome c mutants and their complexes with cytochrome b5. Burrows AL; Guo LH; Hill HA; McLendon G; Sherman F Eur J Biochem; 1991 Dec; 202(2):543-9. PubMed ID: 1662133 [TBL] [Abstract][Full Text] [Related]
8. The role of a conserved water molecule in the redox-dependent thermal stability of iso-1-cytochrome c. Lett CM; Berghuis AM; Frey HE; Lepock JR; Guillemette JG J Biol Chem; 1996 Nov; 271(46):29088-93. PubMed ID: 8910563 [TBL] [Abstract][Full Text] [Related]
9. Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5. Altuve A; Silchenko S; Lee KH; Kuczera K; Terzyan S; Zhang X; Benson DR; Rivera M Biochemistry; 2001 Aug; 40(32):9469-83. PubMed ID: 11583146 [TBL] [Abstract][Full Text] [Related]
10. A polypeptide chain-refolding event occurs in the Gly82 variant of yeast iso-1-cytochrome c. Louie GV; Brayer GD J Mol Biol; 1989 Nov; 210(2):313-22. PubMed ID: 2557455 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the bimolecular reduction of ferricytochrome c by ferrocytochrome b5 through mutagenesis and molecular modelling. Guillemette JG; Barker PD; Eltis LD; Lo TP; Smith M; Brayer GD; Mauk AG Biochimie; 1994; 76(7):592-604. PubMed ID: 7893811 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity. Rafferty SP; Guillemette JG; Berghuis AM; Smith M; Brayer GD; Mauk AG Biochemistry; 1996 Aug; 35(33):10784-92. PubMed ID: 8718869 [TBL] [Abstract][Full Text] [Related]
14. Genetic analysis of yeast iso-1-cytochrome c structural requirements: suppression of Gly6 replacements by an Asn52----Ile replacement. Berroteran RW; Hampsey M Arch Biochem Biophys; 1991 Jul; 288(1):261-9. PubMed ID: 1654826 [TBL] [Abstract][Full Text] [Related]
15. Contribution of leucine 85 to the structure and function of Saccharomyces cerevisiae iso-1 cytochrome c. Parrish JC; Guillemette JG; Wallace CJ Biochem Cell Biol; 2001; 79(4):517-24. PubMed ID: 11527221 [TBL] [Abstract][Full Text] [Related]
16. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation. Moore GR; Cox MC; Crowe D; Osborne MJ; Rosell FI; Bujons J; Barker PD; Mauk MR; Mauk AG Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):439-49. PubMed ID: 9601073 [TBL] [Abstract][Full Text] [Related]
17. The influence of Glu44 and Glu56 of cytochrome b5 on the protein structure and interaction with cytochrome c. Sun YL; Xie Y; Wang YH; Xiao GT; Huang ZX Protein Eng; 1996 Jul; 9(7):555-8. PubMed ID: 8844826 [TBL] [Abstract][Full Text] [Related]
18. The expression of bovine microsomal cytochrome b5 in Escherichia coli and a study of the solution structure and stability of variant proteins. Hewson R; Newbold RJ; Whitford D Protein Eng; 1993 Nov; 6(8):953-64. PubMed ID: 8309945 [TBL] [Abstract][Full Text] [Related]
19. A cytochrome c variant resistant to heme degradation by hydrogen peroxide. Villegas JA; Mauk AG; Vazquez-Duhalt R Chem Biol; 2000 Apr; 7(4):237-44. PubMed ID: 10780923 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]