These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 1653703)

  • 1. An in vitro model showing different rates of substrate cycle for phosphofructokinases of Escherichia coli with different kinetic properties.
    Torres JC; Babul J
    Eur J Biochem; 1991 Sep; 200(2):471-6. PubMed ID: 1653703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition.
    Cabrera R; Baez M; Pereira HM; Caniuguir A; Garratt RC; Babul J
    J Biol Chem; 2011 Feb; 286(7):5774-83. PubMed ID: 21147773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP.
    Guixé V; Babul J
    J Biol Chem; 1985 Sep; 260(20):11001-5. PubMed ID: 3161887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrophosphate-dependent phosphofructo-1-kinase complements fructose 1,6-bisphosphatase but not phosphofructokinase deficiency in Escherichia coli.
    Kemp RG; Tripathi RL
    J Bacteriol; 1993 Sep; 175(17):5723-4. PubMed ID: 8396123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ligands on the aggregation of the normal and mutant forms of phosphofructokinase 2 of Escherichia coli.
    Guixé V; Babul J
    Arch Biochem Biophys; 1988 Aug; 264(2):519-24. PubMed ID: 2969698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphofructokinase-1 and fructose bisphosphatase-1 in canine liver and kidney.
    Kanai S; Shimada T; Narita T; Okabayashi K
    J Vet Med Sci; 2019 Oct; 81(10):1515-1521. PubMed ID: 31474665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific, reversible inactivation of phosphofructokinase by fructose-1,6-bisphosphatase. Involvement of adenosine 5'-triphosphate, oleate, and 3-phosphoglycerate.
    Proffitt RT; Sankaran L
    Biochemistry; 1976 Jun; 15(13):2918-25. PubMed ID: 181051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration of metabolites and the regulation of phosphofructokinase and fructose-1,6-bisphosphatase in Saccharomyces cerevisiae.
    Foy JJ; Bhattacharjee JK
    Arch Microbiol; 1981 May; 129(3):216-20. PubMed ID: 6266361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillations in the phosphofructokinase-fructose 1,6-bisphosphatase cycle. I. Purification and kinetic characterization of fructose 1,6-bisphosphatase from pig liver.
    Schubert C; Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1983; 42(6):597-608. PubMed ID: 6314994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillations in the phosphofructokinase--fructose 1,6-bisphosphatase cycle. II. Influence of fructose 1,6-bisphosphatase on the character of oscillatory states.
    Eschrich K; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1983; 42(6):609-21. PubMed ID: 6314995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of a futile cycle involving reconversion of fructose 6-phosphate to fructose 1,6-bisphosphate during gluconeogenic growth of Escherichia coli.
    Daldal F; Fraenkel DG
    J Bacteriol; 1983 Jan; 153(1):390-4. PubMed ID: 6217196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MgATP and fructose 6-phosphate interactions with phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1992 Nov; 31(46):11510-8. PubMed ID: 1445885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme.
    Babul J
    J Biol Chem; 1978 Jun; 253(12):4350-5. PubMed ID: 149128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of phosphofructokinase-2 from Escherichia coli. A mutant enzyme with a different mechanism.
    Campos G; Guixé V; Babul J
    J Biol Chem; 1984 May; 259(10):6147-52. PubMed ID: 6233271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MgATP-dependent activation by phosphoenolpyruvate of the E187A mutant of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4150-8. PubMed ID: 11300796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphofructokinase and fructosebisphosphatase from muscle can interact at physiological concentrations with mutual effects on their kinetic behavior.
    Ovádi J; Aragón JJ; Sols A
    Biochem Biophys Res Commun; 1986 Mar; 135(3):852-6. PubMed ID: 3008748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of phosphofructokinase (and fructose bisphosphatase) of the liver fluke, Fasciola hepatica.
    Lloyd GM
    Int J Parasitol; 1983 Oct; 13(5):475-81. PubMed ID: 6315612
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphofructokinases A and B from
    Snášel J; Machová I; Šolínová V; Kašička V; Krečmerová M; Pichová I
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.