BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16537178)

  • 1. Biodegradation of chitosan-tripolyphosphate beads: in vitro and in vivo studies.
    Durkut S; Elçin YM; Elçin AE
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(2):263-76. PubMed ID: 16537178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties.
    Lin WC; Yu DG; Yang MC
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):143-51. PubMed ID: 16054345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetracycline release from tripolyphosphate-chitosan cross-linked sponge: a preliminary in vitro study.
    Shen EC; Wang C; Fu E; Chiang CY; Chen TT; Nieh S
    J Periodontal Res; 2008 Dec; 43(6):642-8. PubMed ID: 18624950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo degradation behavior of acetylated chitosan porous beads.
    Lim SM; Song DK; Oh SH; Lee-Yoon DS; Bae EH; Lee JH
    J Biomater Sci Polym Ed; 2008; 19(4):453-66. PubMed ID: 18318958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process.
    Wang LY; Gu YH; Zhou QZ; Ma GH; Wan YH; Su ZG
    Colloids Surf B Biointerfaces; 2006 Jul; 50(2):126-35. PubMed ID: 16787743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan based hydrogel microspheres as drug carriers.
    Vodná L; Bubeníková S; Lacík I; Chorvát D; Bakos D
    Macromol Biosci; 2007 May; 7(5):629-34. PubMed ID: 17477445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling cell adhesion and degradation of chitosan films by N-acetylation.
    Freier T; Koh HS; Kazazian K; Shoichet MS
    Biomaterials; 2005 Oct; 26(29):5872-8. PubMed ID: 15949553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions.
    Kofuji K; Murata Y; Kawashima S
    Int J Pharm; 2005 Oct; 303(1-2):95-103. PubMed ID: 16139972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of drying processes and curing time of chitosan-lysine semi-IPN beads on chlorpheniramine maleate delivery.
    Kumari K; Kundu PP
    J Microencapsul; 2009 Feb; 26(1):54-62. PubMed ID: 18608801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH. Rheological optimisation and drug loading/release behaviour.
    Barreiro-Iglesias R; Coronilla R; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Sci; 2005 Jan; 24(1):77-84. PubMed ID: 15626580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of tripolyphosphate cross-linking on the physical stability and lipase digestibility of chitosan-coated lipid droplets.
    Hu M; Li Y; Decker EA; Xiao H; McClements DJ
    J Agric Food Chem; 2010 Jan; 58(2):1283-9. PubMed ID: 19921835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration.
    Osifo PO; Neomagus HW; Everson RC; Webster A; vd Gun MA
    J Hazard Mater; 2009 Aug; 167(1-3):1242-5. PubMed ID: 19321260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery.
    Shu XZ; Zhu KJ
    Int J Pharm; 2000 May; 201(1):51-8. PubMed ID: 10867264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins.
    Guo TY; Xia YQ; Wang J; Song MD; Zhang BH
    Biomaterials; 2005 Oct; 26(28):5737-45. PubMed ID: 15878379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.
    Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X
    J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads.
    Barreto RV; Hissa DC; Paes FA; Grangeiro TB; Nascimento RF; Rebelo LM; Craveiro AA; Melo VM
    Bioresour Technol; 2010 Apr; 101(7):2121-5. PubMed ID: 19945281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration.
    Shim IK; Lee SY; Park YJ; Lee MC; Lee SH; Lee JY; Lee SJ
    J Biomed Mater Res A; 2008 Jan; 84(1):247-55. PubMed ID: 17607738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation.
    Kim H; Tator CH; Shoichet MS
    J Biomed Mater Res A; 2011 Jun; 97(4):395-404. PubMed ID: 21465644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium.
    Wu SJ; Liou TH; Mi FL
    Bioresour Technol; 2009 Oct; 100(19):4348-53. PubMed ID: 19414251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note.
    Bhumkar DR; Pokharkar VB
    AAPS PharmSciTech; 2006 Jun; 7(2):E50. PubMed ID: 16796367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.